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A modified split-radix FFT
with fewer arithmetic operations

Steven G. Johnson* and Matteo Frigo

TABLE |

Abstract— Recent results by Van Buskirk et al. have broken
FLoP COUNTS(REAL ADDITIONS + MULTIPLICATIONS) OF STANDARD

the record set by Yavne in 1968 for the lowest exact count of
real additions and multiplications to compute a power-of-two COMPLEX-DATA SPLIT RADIX AND OUR NEW ALGORITHM
discrete Fourier transform (DFT). Here, we present a simple
recursive modification of the split-radix algorithm that computes

[ N [ Yavne split radix] New algorithm |

the DFT with asymptotically about 6% fewer operations than 64 1160 1152
Yavne, matching the count achieved by Van Buskirk's program- 128 2824 2792
generation framework. We also discuss the application of our 256 6664 6552
algorithm to real-data and real-symmetric (discrete cosine) trans- f’01224 éiggz égggg
forms, where we are again able to achieve lower arithmetic counts 5048 —7837 ~EEGD
than previously published algorithms. 7096 179040 166856
Index Terms—FFT, DCT, split radix, arithmetic complexity 8192 376840 364680
16384 819208 791264

I. INTRODUCTION

LL known fast Fourier transform (FFT) algorithms com-, . : _
pute the discrete Fourier transform (DFT) of sixein for NV > 1, where the savings (starting at = 64) are due to

. . . simplifications of complex multiplications. See also Table I.
O(N log N) operations, so any improvement in them appear e .
. ore specifically, throughout most of this paper we assume
to rely on reducing the exact number or cost of these ope

) ) . : {ﬁét complex multiplications are implemented with the usual
tions rather than their asymptotic functional form. For man L .
% real multiplications and 2 real additions (as opposed to the

years, the time to perform an FFT was dominated by re “mults + 3 adds variant [9]), and in this case the savings are
number arithmetic, and so considerable effort was devoted {o- . ' L 9
rely in the number of real multiplications.

wards proving and achieving lower bounds on the exact codh . . o :
he first demonstration of this improved count was in a

of arithmetic operations (real additions and multiplications i
herein called “flops” (floating-point operations), required fo 004 Usenet post by Van Buskirk [10], who had managed

a DFT of a given size [2]. Although the performance op save 8 operations over Yavne by hand optimization for

FFTs on recent computer hardware is determined by ma{Y = 64, using an unusual algorithm based on decomposing

factors besides pure arithmetic counts [3], there still remaiﬂg{e DFT into its real and imaginary a_nd even-symmetry
d odd-symmetry components (essentially, type-l discrete

an intriguing unsolved mathematical question: what is !

smallest number of flops required to compute a DFT ofagiv&‘?sme_ and sihe transforms). These initial gains came by
size NV, in particular for the important case of — 22 In rescaling the size-8 sub-transforms and absorbing the scale

1968, Yavne [4] presented what became known as the “Sp"ﬁx_ctor elsewhere in the computation (related savings occur

radix” FFT algorithm [5]-[7] for N — 2™, and achieved a In the type-Il discrete cosine transform of size 8, where one
record flop count ofiNlg N — 6N + 8 fo} N > 1 (where can save six multiplications by rescaling the outputs [11] as

lg denoteslog,), an improvement by 20% over the classiéj'scusseoI n Sec. Viil). an BUSk'rEt al. I_ater deyeloped
“radix-2" algorithm presented by Cooley and Tukey (flopé?n automatic code-generation implementation of his approach

~ 5N 1g N) [8]. Here, we present a modified version of th ggt al\jhievei.:iq.f(ﬁ) g?venhgn_a_r pitlrary fixéd= 27; [1|2 I q
split-radix FFT that (without sacrificing numerical accurac 1. Meanwhile, following his initial posting, we develope

lowers the flop count by a furthes 5.6% (%8) to: way to epr|C|t.Iy achlev.e thg same savings recursl,wely. in
a more conventional split-radix algorithm. Our split-radix

%ngN — %N —2lg N — %(fl)lgngN (1) approach involves a recursive rescaling of the trigonometric

+16(_1)eN 4+ 8 constants (“twiddle factors” [14]) in sub-transforms of the
2 DFT decomposition (while the final FFT result is still the
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tight bounds, respectively [1]. a realizable©(N) lower boundis known for the number
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of irrational real mu|tip|ica’[ions forN = 2m, given by Algorlthm 1 Standard Conjugate-pair Split—radix FFT of |ength
4N —21g®> N —21g N — 4 [2], [16], [17] (matching split radix IV (divisible by 4). (Special-case optimizations fér= 0 and
as well as our algorithm up t& = 16), but is achieved only & = N/8 are not shown.)

at the price of many more additions and thus has limited utilifunction yi—o n_1 < splitfit, (z,):

on CPUs with hardware multipliers. The DFT has been shownuy,—o...nj2—1 splitfft v /o (z2n,)

to require (N log N) complex-number additions for linear zj,—o.. n/a—1 < splitfft x4 (T4n,+1)

algorithms under the assumption of bounded multiplicative z; _, /, ; < splitffty, (

constants [18], or alternatively assuming a bound on a meafor ¥k =0 to N/4 — 1 do

sure of the algorithm’s “asynchronicity” [19]. Furthermore, Yk — Uk + (w]’i,zk. +w;,kz;€)

the numberNm of complex-number additions obtained in y,  y /o — uy, — (wh 2 + wy"2})
Cooley-Tukey-related algorithms (such as split-radix)Xoe Ykt N/4 — Uy nya — 0 (wf“vZk — w]—vkzz)
2™ has been argued to be optimal over a broad class of Ykpan/a — Wepnja+ 1 (W2 7(*);[1«2;{3)
algorithms that do not exploit additive identities in the roots end for

of unity [20]. Our algorithm does not change this number of
complex additions.

In the following, we first review the known variant of thegptain:

x4n471)

split-radix FFT that is the starting point for our modifications, N/2-1

then describe our modified algorithm, analyze its arithmetic w = Z W2k
costs (both theoretically and with two sample implementations ey N
instrumented to count the operations) as well as its numeri- Nja-1

cal accuracy, describe its application to real-input and real- k nak
. . . . +wi E W /4%ana+1
symmetric (discrete cosine) transforms where one also finds =
arithmetic gains over the literature, and conclude with some NJa-1
remarks about practical realizations and further directions. —k Z nak 3
‘HUN WN/4x4n4—17 ( )

n4:0

where thewk, and w;/“ are the conjugate pair of twiddle

factors (whereas ordinary split radix would havg andw3¥).
(In this paper, we will use the term “twiddle factor” to refer to
The starting point for our improved algorithm is not thell data-independent trigonometric constants that appear in an
standard split-radix algorithm, but rather a variant called th&FT.) These summations are DFTs of si¥¢2 and /4, and
“conjugate-pair” FFT that was itself initially proposed tahew?, for k > N/4 are related td = 0... N/4—1 via trivial
reduce the number of flops [21], but its operation count wasultiplications byi and —1. Thus, we obtain Algorithm 1, in
later proved identical to that of ordinary split radix [22]-[24]which the results of the three sub-transforms are denoted by
This variant was rediscovered in unpublished work by Berag,, z;, and z;,.
stein [25], who argued that it reduces the number of twiddle- For clarity, Algorithm 1 omits special-case optimizations for
factor loads. A similar argument was made by Volynets [26};, = 0 in the loop (wherev%; is unity andw¥; z; requires no
who adapted the algorithm to the discrete Hartley transforfilops) and fork = N/8 (wherew%, = (1—14)/+/2 and requires
We use it for a related reason: because the conjugate-gsity 2 real multiplications instead of 4 far%; z;.). It also omits
FFT exposes redundancies in the twiddle factors, it enablée base cases of the recursidh= 1 is just a copyy, = o,
rescalings and simplifications of twiddle pairs that we do neind N = 2 is an additionyg = z¢+z; and a subtractiop; =
know how to extract from the usual split-radix formulationz, — ;. With these optimizations and base cases, the standard
To derive the algorithm, recall that the DFT is defined by: assumptions that multiplications byl and+i are free? and
extracting common sub-expressions suchufis; + wy"z,,

II. CONJUGATE-PAIR SPLITRADIX FFT

N-1 the flop count of Yavne is obtained. More specifically, the
Yk = Z Wiz, (2) number of real additiona(N) and multiplicationsu(N) (for
n=0 4/2 mult/add complex multiplies) is [27]:
wherek = 0...N — 1 andwy is the primitive root of unity a(N) = %ngN — %N — %(—1)1“’ +2 (4
exp(—2mi/N). Then, for N divisible by 4, we perform a 4 38 9
decimation-in-time decomposition of,, into three smaller p(N) = gngN— §N+ §(—1)lgN +6 (5

DFTs, ofzs,, (the even elements},,,, +1, andzy,, —1 (Where
x_1 = zny-1)—this last sub-sequence would bg,, 5 in
standard split radix, but here is shifted cyclically by.? We

Traditionally, the recursion is “flattened” into an iterative

algorithm that performs all the FFTs of a given size at

once [28], may work in-place, can explm’vﬁ/‘l_k = —iw;,’“

to halve the number of twiddle factors (see Sec. \#ix,
2past formulations of the conjugate-pair FFT senat— —n4 and used an

inverse DFT for this sub-transform, but they are essentially equivalent to ouriln the algorithms of this paper, all negations can be eliminated by turning

expression; the difference is a matter of convenience only. additions into subtractions or vice-versa.
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but none of this affects the flop count. Although in this paper
we consider only decimation-in-time (DIT) decompositions, a
dual decimation-in-frequency (DIF) algorithm can always be
obtained by network transpositibifreversing the flow graph
of the computation) with identical operation counts.
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IIl. NEw FFT: RESCALING THE TWIDDLES

scalefactor
o

The key to reducing the number of operations is the obser- g3
vation that, in Algorithm 1, both;, andz;, (the k-th outputs
of the sizeN/4 sub-transforms) are multiplied by a twiddle
factorwk or wy* before they are used to fing.. This means
that we can rescale the si2é/4 sub-transforms bgny factor % 128 2% 3 512 e 8 8% 1004
1/sn/4,1 desired, and absorb the scale factor m{;@sN/4 E at k
no cost. So, we merely need to find a rescaling that will save 12 _
some operations in the sub-transforms. (As is conventional 4@ 1. Scale factos ., from Eq. (7), vs. one period df for V=2
counting FFT operations, we assume that all data-independent
constants Iikauﬁi,sNM’k are precomputed and are therefore
not included in the flops.) Moreover, we rely on the fact that

2z, andz;, have conjugate twiddle factors in the conjugate-pair 1 for N <4
algorithm, so that a single rescaling below will simplify both sy_om j = ¢ sn/4, cos(2mky/N) for ks < N/8 | (7)
twiddle factors to save operations—this is not true fordfe SN/a,ks SIN(2Tky/N)  otherwise

andw3¥ factors in the usual split radix. Below, we begin wit
an outline of the general ideas, and then analyze the pre
algorithm in Sec. IV.

Consider a sub-transform of a given siXethat we wish to
rescale by somé/sy i for each outputy,. Suppose we take
SNk = SNkt n/4 = cos(2mk/N) for k < N/8. In this case, tNk = WhSN oK/ SNk 8
yr from Algorithm 1 becomesy, «— ui/sn i + (Enk2k +
tNx2,), Where

r‘Nhlch has an interesting fractal pattern plotted in Fig. 1. This

&Finition has the propertiesi o = 1, Sy k+n/4 = SN,k @Nd
SN,N/4a—k = SNk (@ sSymmetry whose importance appears in

subsequent sections). We can now generally define:

wheresy/4,1,/5n.x 1S eithersec or csc and thust v . is always
of the form+14-i tan or + cot +4. This last property is critical
because it means that we obtaiq . z;, £ t}‘\,),{z;C in all of the
scaled transforms and multiplication by; ; requires at most

Multiplying w¥ z; requires 4 real multiplications and 2 reat* flops as above.

additions (6 flops) for general, but multiplying ¢ 1.z, re- Rather than elaborate further at this point, we now sim-

quires only 2 real multiplications and 2 real additions (4 flopsply present the algorithm, which consists of four mutually-

(A similar rescaling was proposed [30] to increase the numb@&cursive split-radix—like functions listed in Algorithms 2-3,

of fused multiply-add operations, and an analogous rescalidgd analyze it in the next section. As in the previous section,

also relates the Givens and “fast Givens” QR algorithms [31)ye omit for clarity the special-case optimizations for= 0

Thus, we have saved 4 real multiplications in computingndk = N/8 in the loops, as well as the trivial base cases for

tn.k2k £ Uy, 24, but spent 2 real multiplications i, /sy, 1V =1andN =2.

and another 2 fofi;, n/4/sn.x, for what may seem to be no

net change. However, instead of computing/sy ;. directly, IV. OPERATION COUNTS

we can instead push thig/sy ;, scale factor “down” into the  Algorithms 2 and 3 manifestly have the same number of

recursive computation afy,. In this way, it turns out that we real additions as Algorithm 1 (for 4/2 mult/add complex

can save most of these “extra” multiplications by combininguultiplies), since they only differ by real multiplicative scale

them with twiddle factors inside th&//2 transform. Indeed, factors. So, all that remains is to count the numBé(N)

we shall see that we need to pushsy , down throughtwo of real multiplicationssavedcompared to Algorithm 1, and

levels of recursion in order to gain all of the possible savingthis will give the number of flops saved over Yavne. We must
Moreover, we perform the rescaling recursively, so that tiédso count the numberd/s(N), Mgs2(N), and Mg4(N) of

sub-transforms;, andz;, are themselves rescaled bysy,,, real multiplications saved (or spent, if negative) in our three

for the same savings, and the product of the sub-transforascaled sub-transforms. mewffty () itself, the number

scale factors is combined wittos(27k/N) and pushed up to of multiplications is clearly the same as plitfft (z),

the top-level transform. The resulting scale factgry is given since all scale factors are absorbed into the twiddle factors—

by the following recurrence, where we lef = k mod N/4: note thatsy/,o = 1 so thek = 0 special case is not

worsened either—and thus the savings come purely in the sub-

“Network transposition is equivalent to matrix transposition [29] antransforms:
preserves both the DFT (a symmetric matrix) and the flop count (for equal
numbers of inputs and outputs), but changes DIT into DIF and vice versa. M(N)=M(N/2)+2Ms(N/4). 9

tygx =1 —itan(27k/N) = wh / cos(2nk/N).  (6)
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Algorithm 2 New FFT algorithm of lengthNV (divisible Algorithm 3 Rescaled FFT subroutines called recursively
by 4). The sub-transformsiewfftSy 4 (z) are rescaled by from Algorithm 2. The loops in these routines haseore
sn/4,; t0 save multiplications. The sub-sub-transforms of sizaultiplications than in Algorithm 1, but this is offset by
N/8, in turn, use two additional recursive subroutines frorsavings fromnewfftS,, (x) in Algorithm 2.

Algorithm 3 (four recursive functions in all, which differ inf;nction Yh—o. N1 — newfFtS2y (

their rescalings).

function yr—o.n_1 < newffty (x,):
{computes DFF
Upy—0...N/2—1 — newfft v/ (22,,)
Zhy=0...Nja—1 — newfftSy /4 (T4n,11)
0. nya—1 — NeWHtSyy (24n,-1)
for k=0to N/4—1do
Y ¢ U + (wjk\,sN/Zl,kzk + w1§k5N/4,kZ’/€)

—k /
Yk+N/2 < Uk — (WNSN/4, k2 + Wy 3N/4,kzk)

T):
{computes DFT kon 1}
Upy—0..N/2—1 — newfftS4y o (v2n,)
Zhy=0...Nja—1 — newfftSy /4 (T4n,41)
0. nya—1 < DeWHTtS /4 (T4n, 1)
for k:0toN(4—1 do

Y — Up + (EN 2K + t}‘mszc) (SN k/S2N k)

Ykt N/2 < Uk — (tN,ka- + t}‘V,kZ;Q) - (SN.k/S2N.k)
Yk+Nja < Uk+N/4

Yk+N/4 < Uk N/4 N
—1 (WNSN/47ka —wy SN/47]€Z§€)
yk+3N/4 t Uk+N/4 L ) +i(tNp2E — t?v,szc) : (SN,k/SQN,k+N/4)
+1 (wNSN/4,ka — Wy 5N/4,kzk) end for
end for

- !
A t*N,ka) “(SN.k/S2N K+ N/4)
Yk+3N/4 < Uk+N/4

function yi—o. ny_1 < newfftS4y (z,):
{computes DFT byn 1}
Upy—0...N/2—1 — newfftS2y o (72n,)
Zky=0...N/a—1 < newfttSy/y (Tan,+1)
Zl/¢4:0...N/4—1 — newfftSy s (Tan,—1)
for k=0to N/4—1 do

Yk {Uk + (tN,ka + t}kv,;ngg)} (SN k/San k)

function yr—o. n_1 < newfftSy (z,):
{computes DFT by 1}
Upy—0..N/2—1 — NewfftS2y s (22n,)
Zhy=0...N/a—1 < NeWITtS y/y (Tan, 1)
224:0...N/4—1 — newfttSy 4 (z4n,-1)
for k:OtoN(zl—ldo

Y — ug + (tnp2e + t*N,szc) iy
Ykt N/2 < [Uk - (tN,ka + tN,ka)}

: (SN,k/54N,k+N/2)
Ykt N/4 < |UkyN/a — U\ IN k2K — t}kv,kdc)}
Yk+3N/4 < UpaN/a T 0 (ENk2E — t?v,szc) - (8N &/ 54N k+N/4)
end for Yk+3N/4 < [uk+1v/4 +i(tN g2k — t*N,kZ@]
- (8Nk/S4N k+3N/4)

Ykt N/j2 < Uk — (tN,ka + tfv,k%@)

- !
Ykt N/4 < UgpN/a — & (tN,IcZk - tf\r,kzk)

end for

In newfftSy (x), as discussed above, the substitution @f;
for wk means that 2 real multiplications are saved from each
twiddle factor, or 4 multiplications per iteratignof the loop. _ ]
This savesV multiplications, except that we have to take intginally, the routine newfftS4y (z) involves ©(N) more
account thet = 0 andk = N/8 special cases. Fdr = N/8, multiplications tha_n_ordmary split-radix, althoug_h we have
tnr = 1—4, again saving two multiplications (by/v/2) per endeavored to minimize this b.y proper groupings of t_he
twiddle factor. Sincety,o = 1, however, thek = 0 special operands. We save 4 real_multlpllcatlons per loop iteration
case is unchanged (no multiplies), so we only save- 4 k because of th_e]\@k replacingw®;. However, because each
multiplies overall. Thus, output has a distinct scale factos.fy, # S4Nk+N/2 ;é
S4Nk+N/4 7 San,k+3N/4), We spend 8 real multiplications
Mg(N) = Mg2(N/2) + 2Ms(N/4) + N — 4. (10) per iteration, for a net increase of 4 multiplies per iteration
k. For thek = 0 iteration, however, théy, = 1 gains us
At first glance, thenewfftS2y (x) routine may seem to nothing, whilessy o = 1 does not cost us, so we spend 6 net
have the same number of multiplications sslitfft ; (), multiplies instead of 4, and therefore:
since the 2 multiplications saved in eatf; (as above) are
exactly offset by thesy x/san , Multiplications. (Note that
we do not fold thesy x /sa2n  into thety , because we also Mgy(N) = Mga(N/2) +2Mg(N/4) — N —2.  (12)
have to scale by x/s2n k+n/4 @nd would thus destroy the
tn k2r CcOmMmon sub-expression.) However, we spend 2 extra
multiplications in thek = 0 special case, which ordinarily Above, we omitted the base cases of the recurreriaes,
requires no multiplies, sincey.o/son n/a = 1/Sannya # the N = 1 or 2 that we handle directly as in Sec. Il (without
+1 (for N > 2) appears inyy,s andysn,4. Thus, recursion). There, we find/(N < 2) = Mg(N < 2) =
Msa(N < 2) = Mg4(1) = 0 (where the scale factors are
Mgy(N) = Mgy(N/2) +2Ms(N/4) — 2. (11) unity), and Ms4(2) = —2. Finally, solving these recurrences
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3e-16

by standard generating-function methods [1] (fér> 1):

@ new FFT
2 38 25616 G0 original split radix
M(N) = SNIgN— =N +21gN (13)
2 16 5 2016
21N e N — —(—1)eN. £
+g(=DE g N — o= (-1) ;

Subtracting Eg. (13) from the flop count of Yavne, we obtain®
Eg. (1) and Table |. Separate counts of real adds/mults arg e
obtained by subtracting (13) from (5).

In the above discussion, one immediate question that arises se17!
is: why stop at four routines? Why not take the scale factors
in newfftS4, (z) and push them down into yet another %% 64 256 1024 4006 16384 G536 262144 1048576
recursive routine? The reason is, unlike iewfftS2y (z), DFT sizeN
V\{G lack sufficient symmetry: pecause the scale faCthS %8 2. Root-mean-squaré.) relative error of our new FFT and the standard
different fory,, and Yk+Ny/2, NO single scale factor fa;, will  conjugate-pair split-radix FFT versus DFT six& in 64-bit double precision.
save us that multiplication, nor can we apply the same scale
factor to thety .z, +t}y .2, common sub-expressions. Thus,
independent of any practical concerns about algorithm size, we V. FLOATING-POINT ACCURACY
currently see no arithmetic benefit to using more subroutines.

In some FFT applications, such as convolution with a fixe In ‘order to measure the accuracy of the new algo-

kernel, it is acceptable to compute a scaled DFT instead 'of' " Ve computed thel, (root-mean-square) relative er-

the DFT, since any output scaling can be absorbed elsewhete (VY |Ayk|2/\{z Iy;iP) of our “toy |mplementat|on
. . compared to the “exact” result (from an FFT implemented
at no cost. In this case, one would cawfftS y (x) directly . : o : ; .
and saveMs(N) multiplications over Yavne, where: in arbitrary-precision ar|thmet|c), _for uniform pse_u_do—random
inputs =, € [-0.5,0.5), in 64-bit double precision on a
2 20 2 e N 7 e N Pentium IV with Linux and gcc 3.3.5. The results, in Fig. 2,
Mg(N) = gNle N—2*7N+§(_1) ®7 g N—2—7(—1) ®7 41, show that our new FFT has errors within 10% of the standard
(14)  conjugate-pair split-radix algorithm, both growing roughly as
with savings starting ab/s(16)= 4. ~ /Iog N [34]. At first glance, this may seem surprising,
To verify these counts, as well as the correctness, accurasipice our use of the tangent function, which is singular, or
and other properties of our algorithm, we created a “toyéquivalently our division by a cosine iy sy ;, may appear to
(slow) implementation of Algorithms 1-3, instrumented teaise questions about the numerical accuracy of our algorithm.
count the number of real operations. (We checked it fédthough we have not performed a detailed numerical analysis,
correctness via [32], and for accuracy in Sec. V.) This inthe reason for the similarity to standard split radix seems
plementation was also instrumented to check for any simpiear upon closer inspection: weever addscaled values
multiplications by +1, +i, anda - (1 + ¢), as well as for with unscaled values, so that whenever standard split radix
equal scale factors, that might have been missed in tbemputess + b our new FFT merely computes: (a + b) for
above analysis, but we did not discover any such obviogeme constant scale factarAn alternative explanation might
opportunities for further savings. We have also implementaiimply be that our scale factors are not very big, as described
our new algorithm in the symbolic code-generation framewotlelow, but we have checked this: changing Eq. (7)sfer to
of FFTW [33], which takes the abstract algorithm as inpug less-symmetric form that always uses (and thus grows
performs symbolic simplifications, and outputs optimized @ery small forsy n/4—1, e.g.reaching10—2° for N = 220),
code for a given fixed size. The generator also outputs a flthe error varies by less than 10% from Fig. 2.
count that again verified Eq. (1), and the simplifier did not find Another concern, nevertheless, might be simply that
any trivial optimizations that we missed,; this code was agaihe scaling factor will grow so large/small as to induce
checked for correctness, and its performance is discussedwer/underflow. This is not the case: thgsy ;. from Eq. (7)
the concluding section below. grows so much more slowly than the DFT values themselves
Finally, we should note that if one compares instead to spliwhich grow as~ +/N for random inputs) that over/underflow
radix with the 3/3 mult/add complex multiplies often used ishould not be significantly worsened by the new FFT algo-
earlier papers (which trade off some real multiplications faithm. In particular, we explicitly avoided the cosine zero (at
additions without changing the total flops), then our algorithih = N/4) by the symmetric form of (7), so that its cosine
has slightly more multiplications and fewer additions (stilfor sine) factor is always> 1//2; thus, the loose bound
beating the total flops by the same amount, of course). The /4 < sy, < 1 follows. In fact, the smallest(m) where
reason is that the factored form of the multiplications iRym 1,y is minimum apparently follows the integer sequence
Algorithm 3 cannot, as far as we can tell, exploit the 3/8007910 [35], which approachdgm) — 2™ /10, and thus
trick to trade off multiplies for adds. In any case, this tradeoffiin(sy ) ~ N8 cos(7/5) ~ N—1/6:54 agymptotically. For
no longer appears to be beneficial on CPUs with hardwaggample, withN = 220, the minimum scale factor is only
multipliers (and especially those with fused multiply-addersyszo 194555 ~ 0.133.
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It is instructive to contrast the present algorithm with the FLOPS OF STANDATRADBIF;EAILDATA SPLIT RADIX
“real-factor” FFT algorithm that was once proposed to reduce AND OUR NEW ALGORITHM
the number of multiplications, but which proved numerically
ill-behaved and was later surpassed by split radix [2], [36]. [N [ Real-data split radix] New algorithm |
In that algorithm, one obtained an equation of the form fz“s 1521:6 1521740
yr = ug — tcse(2wk/N)eg /2 (k # 0, N/2), whereuy, is the 56 3078 3027
transform ofz,,, (the even elements) ang is the transform of 512 7174 7014
Zon+1 —T2n—1 (the difference of adjacent odd elements). This 1024 16390 15962
reduces the number of real multiplications (matching standard 421832 g?g;g ?g;gi
split radix, albeit with more additions), but is numerically 8192 180230 174150
ill-behaved because of the singulesc function—unlike in 16384 393222 379250

our algorithm, ¢, was not scaled by anysin function that

would cancel thecse singularity, and thus the addition with

the unscaled:;, exacerbates roundoff. storage are employed [37]. Because of the recursive nature

of Eq. (7), however, it is not obvious to us how one might

V1. TWIDDLE FACTORS computesy 1 by a simple recurrence fromy ; or similar.

_ In the standarq conjugz_ite-pair split-radix Algorithm 1, there VIl. REAL-DATA FETS

is a redundancy in the twiddle factors betwéeand N/4 — k: .

wx/‘l’k = —z’w;,’“. This can be exploited to halve the number For rea:l inputsz,, the OUtPUtSy’“ obey the symmetry

of twiddle factors that need to be computed (or loaded frofft —* ~ Y& and one can save slightly more th_an a factor of two

a lookup table):w, is computed only fork < N/8, and in flops \_/vheh computmg the DFT by ellmlnatlng the redundant

for N/8 < k < N/4 it is found by the above identity calculations; practical implementations of this approach have

. . . S ; ; been devised for many FFT algorithms, including a split-
via conjugation and multiplication by-i (both of which . :
are costless operations). This symmetry is preserved by ﬁlglx—based real-data FFT [38], [39] that achieved the best

rescaling of our new algorithm, sineg; n/4—, = sy . Thus, nown flop count oRNlg N' — 4N +6 for N = 2™, N > 1.

for N/S < k < N/4 we can share the (rescaled) twiddlérhe same elimination of redundancy applies to our algorithm,

factors withk < N/8. For example, innewfftSy (), we and thus we can lower the minimum flops required for the
obtainyy, = uy—it}y N/4—kzk+itN,N/4—kZ;g for k > N/8 (the real-data FFT.

operation count is unchanged, of course). The twiddle fact%rsBeCE}usfe otur altg;]or;thm only (Ijn‘ferslfron; standar? .Sp“t r_a(tj_lx
in newffty () are also redundant becausg s /i = y scale factors that are purely real and symmetric, existing

s/, (from the periodicity ofs y ;). FornewfftS2y (), we algorithms for the decimation-in-time split-radix FFT of real

have constants,y  and sy i+ x4, and we use the fact thatdata [39] immediately apply: the 'number of additions is un-
_ ’ i _ changed as for the complex algorithm, and the number of real
SON,N/4—k = S2N,k+N/4 and S2N,(N/4—k)+N/4 = S2N,k SO

that the constants are shared betwken N/8 andk > N/8 multiplications is exactly half that of the complex algorithm.
albeit in reverse order. Similarly, fonewfftS4y (z), Wé In particular, we savel/(N)/2 multiplies compared to the

have CONStaNtS; v k. S4x k4 /2 SAN .kt N /40 ANASAN &1 3N/4] pﬁwouti Z«’::;ggr;tums. Thgs, the flop count for a real-data FFT

whenk — N/4 — k, these become4N7k+3N/4, SAN k+N/4» otleng o IS now.

S4N,k+N/2, and sy k. respectively. INIgN - 82N —1gN — L(-1)'sN1gN (15)
Despite these redundancies, our new FFT requires a larger FE(—1)EN 46

number of distinct twiddle-factor-like constants to be com- 2

puted or loaded than the standard conjugate-pair FFT aldor N > 1. To derive this more explicitly, note that each of the

rithm, because of the differing scale factors in the four subrotecursive sub-transforms in Algorithms 2—-3 operates on real

tines. It is difficult to make precise statements about the conseputsz,, and thus hagy_; = y; (a symmetry unaffected by

guences of this fact, however, because the performance imphet real scale factors, which satisfyn y_x = sen i for £ <

will depend on the implementation of the FFT, the layout of). Therefore, in the loop ovek, the computation ofj;, n/2

the pre-computed twiddle tables, the memory architecture, amad y;, . 5/4 is redundant and can be eliminated, saving half

the degree to which loads of twiddle factors can be overlappetl M/ (N) (in Ms(N), etc), except fork = 0 whereyy,,

with other operations in the CPU. Moreover, the access pattésnthe real Nyquist element. Fér = 0, we must compute

is complex; for example, theewfftSy () routine actually both yo and yy,2, but since these arboth purely real we

requiresfewertwiddle constants thasplitfft 5, (x), sincety ,  still save half of M (V) (multiplying a real number by a real

is only 1 nontrivial real constant vs. 2 fark,. Such practical scale factor costs 1 multiplws. 2 multiplies for a complex

concerns are discussed further in the concluding remarks. number and a real scale factor). As for complex data, Eq. (15)
A standard alternative to precomputed tables of twiddigelds savings over the standard split-radix method starting at

constants is to generate them on the fly using an iteratidé = 64, as summarized in Table II.

recurrence relation of some som.g§. one crude method is As mentioned above, we also implemented our complex-

wj“\,“ = wk - w}), although this sacrifices substantial accudata algorithm in the code-generation program of FFTW,

racy in the FFT unless sophisticated methods Witlog V)  which performs symbolic-algebra simplifications that have
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TABLE Il

this DCT-II [41] (V > 1), as can be derived from the standard
FLOPS REQUIRED FOR THE DISCRETE COSINE TRANSFOR(DCT) BY

split-radix approach [42] (and is also reproduced automatically

PREVIOUS ALGORITHMS AND BY OUR NEW ALGORITHM . . .
by our generator starting from complex split radix), whereas

[N, DCT type [ Previous besf New algorithm | the flop counts produced by our generator starting from our
16, DCT-II 112 110 new FFT are given in Table Ill. The DCT-III (also called the
32, DCT-Il 288 282 “IDCT” since it inverts DCT-1I) is simply the transpose of the
64, DCTAII 704 684 DCT-Il and it i ¢ identical
128 DCT 1664 1612 -1l and its operation counts are identical.

8 DCT.IV 56 =1 It is also common to compute a DCT—II with scaled outputs,
16, DCT-IV 144 140 e.g.for the JPEG image-compression standard where an arbi-
2‘21, Bg:x ggg ggg trary scaling can be absorbed into a subsequent quantization
128, DCTIV 1920 1838 step [43], and in this case the scal!ng can save 6 multipli-
32 DCT 539 537 cations [11] over the 40 flops required for an unscaled 8-
64, DCTI 593 585 point DCT-Il. Since ournewfftSy (x) attempts to be the
128, DCT-I 1427 1399 optimal scaled FFT, we should be able to derive this scaled

DCT-II by using it in the generator instead néwfft x (x)—

indeed, we find that it does save exactly 6 multiplies over
proved sufficiently powerful to automatically derive optimalour unscaled result (after normalizing the DFT by an overall
arithmetic real-data FFTs from the corresponding “optimafactor of 1/2 due to the DCT symmetry). Moreover, we can
complex-data algorithm—it merely imposes the appropriaifow find the corresponding scaled transforms of larger sizes:
input/output symmetries and prunes redundant outputs afng. 96 flops for a size-16 scaled DCT-II, and 252 flops for
computations [33]. Given our new FFT, we find that it cagize 32, saving 14 and 30 flops, respectively, compared to the
again automatically derive a real-data algorithm matching th@scaled transform above.

predicted flop count of Eq. (15). For the DCT-IV, which is the basis of the modified discrete
cosine transform (MDCT) [44], the corresponding symmetric
VIII. DISCRETE COSINE TRANSFORMS DFT is of length8N, and thus the new algorithm yields

Similarly, our new FFT algorithm can be specialized fopavings starting alv = 8: the best (split-radix) methods for
DFTs of real-symmetric data, otherwise known as discre®® 8-point DCT-IV require 56 flops (&N lg V + N [42]) for
cosine transforms (DCTs) of the various types [40] (ari@® DCT-IV defined by
also discrete sine transforms for real-antisymmetric data). N-1 w4+ Dk + 1)

Moreover, since FFTW's generator can automatically derive yr = V2 Z 2y, COS {QNQ] , an
algorithms for types I-IV of the DCT and DST [3], we n=0

have found that it can automatical_ly realize ari_thmeti(_: savingshereas the new algorithm requires 54 flops Mr= 8 (as
over the best-known DCT/DST implementations given oWerived by our generator), with other sizes shown in Table IIl.

new FFT, as summarized in Table ?I!Although here we  Finally, a type-I DCT of lengthV (with N + 1 data points)
exploit the generator and have not derived explicit gendtal-gefined as

algorithms for the DCT flop count (except for type 1), the same N1

basic principles (expressing the DCT as a larger DFT with _ . 1)y 9 mnk 18
appropriate symmetries and pruning redundant computations ve =0+ (1) Tan + ; n €O (18)
from an FFT) have been applied to “manually” derive DCT ) .
algorithms in the past and we expect that doing so with tfi €xactly equivalent to a DFT of lengthV where the input

new algorithm will be straightforward. Below, we considefata are real-symm_etrim;;(N_n = xrn),_and the split-radix
types Il, lll, 1V, and | of the DCT. FFT adapted for this symmetry requiréVIig N — 3N +

A type-Il DCT (often called simply “the” DCT) of lengtiV 21g N +5 flops [38]° Because the scale factoss ;. preserve

is derived from a real-data DFT of lengitiV with appropriate this symmetry, one can employ exactly the same approach

symmetries. Therefore, since our new algorithm begins to yiefd saveM (2N)/4 multiplications starting from our new FFT
improvements starting aV — 64 for real/complex data, it (proof is identical). Indeed, precisely these savings are derived

yields an improved DCT-II starting aN = 16. Previously, by the FFTW generator for the first few, as shown in
a 16-point DCT-1I with 112 flops was reported [11] for theTable 1.
(unnormalized)N-point DCT-1I defined as:

IX. CONCLUDING REMARKS

= m(n+ 3k 1 fork=0 ; : i
T Z T, COS {2} : { V3 otherwise (16)  The longstanding arithmetic record of Yavne for the power-
n=0 N 2 otherwise of-two DFT has been broken, but at least two important ques-

whereas our generator now produces the same transform Vyi%ls remain unanswered. First, can one do better still? Second,

only 110 flops. In genera? N 1g N— N flops were required for Will the new algorithm result in practical improvements to
actual computation times for the FFT?

5The precise multiplication count for a DCT generally depends upon the
normalization convention that is chosen; here, we use the same normalizatiorfOur count is slightly modified from that of Duhamel [38], who omitted
as the references cited for comparison. all multiplications by 2 from the flops.
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Since this algorithm represents a simple transformatiofs]
applied to the existing split-radix FFT, a transformation that
has obviously been insufficiently explored in the past fouf®!
decades of FFT research, it may well be that further gains can
be realized by applying similar ideas to other algorithms of7]
by extending these transformations to greater generality. One
avenue to explore is theutomaticapplication of such ideas— [g]
is there a simple algebraic transformational rule that, when ap-
plied recursively in a symbolic FFT-generation program [33]{9
[45], can derive automatically the same (or greater) arithmetic
savings? (Note that both our own code generation and that of
Van Buskirk currently require explicit knowledge of a rescale, (1)
FFT algorithm.) Moreover, a new fundamental question Is
to find the lowest-arithmetiscaled DFT—our current best [12]
answer isnewfftSy (z) and Eq. (14), but any improvement
will also improve the unscaled DFT.

The question of practical impact is even harder to answer,
because the question is not very well defined—the “faste$t4l
algorithm depends upon what hardware is running it. For lar
N, however, it is likely that the split-radix algorithm here will
have to be substantially modified in order to be competitiveLe]
since modern architectures tend to favor much larger radices
combined with other tricks to placate the memory hierafi7]
chy [3]. (Unless similar savings can be realized directly for
higher radices [46], this would mean “unrolling” or “blocking”
the decomposition ofN so that several subdivisions argis)
performed at once.) On the other hand, for sm¥ll which
can form the computational “kernels” of generdl+FTs, we
already use the original conjugate-pair split-radix algorithm
in FFTW [33] and can immediately compare the performand?d]
of these kernels with ones generated from the new algorith ]
We have not yet performed extensive benchmarking, however,
and the results of our limited tests are somewhat difficult {22]
assess. On a 2GHz Pentium-IV with gcc, the performance V\\/Bga
indistinguishable for the DFT of size 64 or 128, but the ne
algorithm was up to 10% faster for the DCT-II and IV of smalj24]
sizes—a performance difference greater than the change _in

) : . . =~ o8]
arithmetic counts, leading us to suspect some fortuitous mt[er—
action with the code scheduling. Nevertheless, it is precisabs]
because practical performance is so unpredictable that the
availability of new algorithms, especially ones with reasonabh(n
regular structure amenable to implementation, opens up rich
areas for future experimentation.

(23]
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