
The Fastest Fourier Transform in the West
(MIT-LCS-TR-728)

Matteo Frigo1 Steven G. Johnson2

Massachusetts Institute of Technology

September 11, 1997

Matteo Frigo was supported in part by the Defense Advanced Research Projects Agency (DARPA) under
Grant N00014-94-1-0985. Steven G. Johnson was supported in part by a DoD NDSEG Fellowship, an MIT
Karl Taylor Compton Fellowship, and by the Materials Research Science and Engineering Center program of
the National Science Foundation under award DMR-9400334.

This paper is a technical report of the MIT Labroratory for Computer Science MIT-LCS-TR-728
1MIT Laboratory for Computer Science, 545 Technology Square NE43-203, Cambridge, MA

02139. athena@theory.lcs.mit.edu
2Massachusetts Institute of Technology, 77 Massachusetts Avenue, 12-104, Cambridge, MA

02139. stevenj@mit.edu



Abstract

This paper describes FFTW, a portable C package for computing the one- and multidimen-
sional complex discrete Fourier transform (DFT). FFTW is typically faster than all other
publicly available DFT software, including the well-known FFTPACK and the code from
Numerical Recipes. More interestingly, FFTW is competitive with or better than propri-
etary, highly-tuned codes such as Sun’s Performance Library and IBM’s ESSL library. FFTW
implements the Cooley-Tukey fast Fourier transform, and is freely available on the Web at
http://theory.lcs.mit.edu/˜fftw.

Three main ideas are the keys to FFTW’s performance. First, the computation of the
transform is performed by an executor consisting of highly-optimized, composable blocks
of C code called codelets. Second, at runtime, a planner finds an efficient way (called a
‘plan’) to compose the codelets. Through the planner, FFTW adapts itself to the architecture
of the machine it is running on. Third, the codelets are automatically generated by a codelet
generator written in the Caml Light dialect of ML. The codelet generator produces long,
optimized, unreadable code, which is nevertheless easy to modify via simple changes to the
generator.

Keywords: Fast Fourier transform, high performance, ML, code generation.



1 Introduction

This paper describes FFTW, a portable C package for computing the one- and multidimen-
sional complex discrete Fourier transform (DFT). Extensive benchmarking demonstrates
that FFTW is typically faster than all other publicly available DFT software, including the
well-known FFTPACK [1] and the code from Numerical Recipes [2]. More interestingly,
FFTW is competitive with or better than proprietary, highly-tuned codes such as Sun’s Per-
formance Library and IBM’s ESSL library. FFTW is an implementation of the Cooley-
Tukey [3] fast Fourier transform (FFT), and is freely available on the World Wide Web at
the URL http://theory.lcs.mit.edu/˜fftw.

Three main ideas are the keys to FFTW’s performance. First, the computation of the
transform is performed by an executor consisting of highly-optimized, composable blocks
of C code called codelets. Second, at runtime, a planner finds an efficient way (called a plan)
to compose the codelets. Through the planner, FFTW adapts itself to the architecture of the
machine it is running on. In this way, FFTW is a single program that performs efficiently
on a variety of architectures. Third, the codelets are automatically generated by a codelet
generator written in the Caml Light dialect of ML [4]. The codelet generator produces long,
optimized, unreadable code, which is nevertheless easy to modify via simple changes to the
generator.

Despite its internal complexity, FFTW is easy to use. (See Figure 1.) The user interacts
with FFTW only through the planner and the executor; the codelet generator is not used after
compile-time. FFTW provides a function that creates a plan for a transform of a certain size.
Once the user has created a plan, she can use the plan as many times as needed. FFTW is
not restricted to transforms whose size is a power of 2. A parallel version of the executor,
written in Cilk [5], also exists.

The executor implements the well-known Cooley-Tukey algorithm [3], which works by
factoring the size N of the transform into N = N1N2. The algorithm then recursively com-
putesN1 transforms of sizeN2 and N2 transforms of sizeN1. The base case of the recursion
is handled by the codelets, which are hard-coded transforms for various small sizes. We em-
phasize that the executor works by explicit recursion, in sharp contrast with the traditional
loop-based implementations [6, page 608]. The recursive divide-and-conquer approach is
superior on modern machines, because it exploits all levels of the memory hierarchy: as
soon as a subproblem fits into cache, no further cache misses are needed in order to solve
that subproblem. Our results contradict the folk theorem that recursion is slow. Moreover,
the divide-and-conquer approach parallelizes naturally in Cilk.

The Cooley-Tukey algorithm allows arbitrary choices for the factors N1 and N2 of N .
The best choice depends upon hardware details like the number of registers, latency and
throughput of instructions, size and associativity of caches, structure of the processor pipeline,

1



fftw_plan plan;
int n = 1024;
COMPLEX A[n], B[n];

/* plan the computation */
plan = fftw_create_plan(n);

/* execute the plan */
fftw(plan, A);

/* the plan can be reused for other inputs
of size n */

fftw(plan, B);

Figure 1: Simplified example of FFTW’s use. The user must first create a plan, which can
be then used at will. In the actual code, there are a few other parameters that specify the
direction, dimensionality, and other details of the transform.

etc. Most high-performance codes are tuned for a particular set of these parameters. In con-
trast, FFTW is capable of optimizing itself at runtime through the planner, and therefore the
same code can achieve good performance on many architectures. We can imagine the plan-
ner as trying all factorizations ofN supported by the available codelets, measuring their exe-
cution times, and selecting the best. In practice, the number of possible plans is too large for
an exhaustive search. In order to prune the search, we assume that the optimal solution for
a problem of size N is still optimal when used as a subroutine of a larger problem. With this
assumption, the planner can use a dynamic-programming [7, chapter 16] algorithm to find
a solution that, while not optimal, is sufficiently good for practical purposes. The solution
is expressed in the form of byte-code that can be interpreted by the executor with negligible
overhead. Our results contradict the folk theorem that byte-code is slow.

The codelet generator produces C subroutines (codelets) that compute the transform of
a given (small) size. Internally, the generator itself implements the Cooley-Tukey algorithm
in symbolic arithmetic, the result of which is then simplified and unparsed to C. The simpli-
fication phase applies to the code many transformations that an experienced hacker would
perform by hand. The advantage of generating codelets in this way is twofold. First, we can
use much higher radices than are practical to implement manually (for example, radix-32
tends to be faster than smaller radices on RISC processors). Second, we can easily exper-
iment with diverse optimizations and algorithmic variations. For example, it was easy to
add support for prime factor FFT algorithms (see [8] and [6, page 619]) within the codelets.

2



A huge body of previous work on the Fourier transform exists, which we do not have
space to reference properly. We limit ourselves to mention some references that are impor-
tant to the present paper. A good tutorial on the FFT can be found in [9] or in classical text-
books such as [6]. Previous work exists on automatic generation of FFT programs: [10] de-
scribes the generation of FFT programs for prime sizes, and [11] presents a generator of
Pascal programs implementing a Prime Factor algorithm. Johnson and Burrus [12] first ap-
plied dynamic programming to the design of optimal DFT modules. Although these papers
all deal with the arithmetic complexity of the FFT, we are not aware of previous work where
these techniques are used to maximize the actual performance of a program. The behavior
of the FFT in the presence of nonuniform memory was first studied by [13]. Savage [14]
gives an asymptotically optimal strategy for minimizing the memory traffic of the FFT un-
der very general conditions. Our divide-and-conquer strategy is similiar in spirit to Sav-
age’s approach. The details of our implementation are asymptotically suboptimal but faster
in practice. Some other theoretical evidence in support of recursive divide-and-conquer al-
gorithms for improving locality can be found in [15].

In this short paper we do not have space to give more details about the planner and the
executor. Instead, in Section 2 we present performance comparisons between FFTW and
various other programs. In Section 3, we discuss the codelet generator and its optimization
strategy. Finally, in Section 4 we give some concluding remarks.

2 Performance results

In this section, we present the result of benchmarking FFTW against many public-domain
and a few proprietary codes. From the results of our benchmark, FFTW appears to be the
fastest portable FFT implementation for almost all transform sizes. Indeed, its performance
is competitive with that of the vendor-optimized Sun Performance and ESSL libraries on
the UltraSPARC and the RS/6000, respectively. At the end of the section we describe our
benchmark methodology.

It is impossible to include the benchmark results for all machines here. Instead, we
present the data from two machines: a 167-MHz Sun UltraSPARC-I and an IBM RS/6000
Model 3BT (Figures 2 through 6). Data from other machines are similar and can be found
on our web site, as well as results for transforms whose size is not a power of 2. The perfor-
mance results are given as a graph of the speed of the transform in MFLOPS versus array
size for both one and three dimensional transforms. The MFLOPS count is computed by
postulating the number of floating point operations to be 5N log

2
N , whereN is the number

of complex values being transformed (see [16, page 23] and [17, page 45]). This metric is
imprecise because it refers only to radix-2 Cooley-Tukey algorithms. Nonetheless, it allows

3



our numbers to be compared with other results in the literature [1]. Except where otherwise
noted, all benchmarks were performed in double precision. A complete listing of the FFT
implementations included in the benchmark is given in Table 1.

Figure 2 shows the results on a 167MHz UltraSPARC-I. FFTW outperforms the Sun
Performance Library for large transforms in double precision, although Sun’s software is
faster for sizes between 128 and 2048. In single precision (Figure 4) FFTW is superior over
the entire range. On the RS/6000 FFTW is always comparable or faster than IBM’s ESSL
library, as shown in Figures 3 and 6. The high priority that was given to memory locality in
FFTW’s design is evident in the benchmark results for large, one-dimensional transforms,
for which the cache size is exceeded. Especially dramatic is the factor of three contrast on
the RS/6000 (Figure 3) between FFTW and most of the other codes (with the exception of
CWP, discussed below, and ESSL, which is optimized for this machine). This trend also
appeared on most of the other hardware that we benchmarked.

A notable program is the one labelled ‘CWP’ in the graphs, which sometimes surpasses
the speed of FFTW for large transforms. Unlike all other programs we tried, CWP uses a
prime-factor algorithm [18, 19] instead of the Cooley-Tukey FFT. CWP works only on a
restricted set of transform sizes. Consequently, the benchmark actually times it for a trans-
form whose size (chosen by CWP) is slightly larger than that used by the rest of the codes.
We chose to include it on the graph since, for many applications, the exact size of the trans-
form is unimportant. The reader should be aware that the point-to-point comparison of CWP
with other codes may be meaningless: CWP is solving a bigger problem and, on the other
hand, it is choosing a problem size it can solve efficiently.

The results of a particular benchmark run were never entirely reproducible. Usually, the
differences from run to run were 5% or less, but small changes in the benchmark could pro-
duce much larger variations in performance, which proved to be very sensitive to the align-
ment of code and data in memory. We were able to produce changes of up to 10% in the
benchmark results by playing with the data alignment (e.g. by adding small integers to the
array sizes). More alarmingly, changes to a single line of code of one FFT could occasion-
ally affect the performance of another FFT by more than 10%. The most egregious offender
in this respect was one of our Pentium Pro machines running Linux 2.0.17 and the gcc 2.7.2
compiler. On this machine, the insertion of a single line of code into FFTW slowed down
a completely unrelated FFT (CWP) by almost a factor of twenty. Consequently, we do not
dare to publish any data from this machine. We do not completely understand why the per-
formance Pentium Pro varies so dramatically. Nonetheless, on the other machines we tried,
the overall trends are consistent enough to give us confidence in the qualitative results of
the benchmarks.

Our benchmark program works as follows. The benchmark uses each FFT subroutine
to compute the DFT many times, measures the elapsed time, and divides by the number

4



B

B

B

B

B

B B

B

B
B

B

B

B

B

B
B

1

1

1

1
1

1

1

1

1

1

1

1

1

1
1 1

J J
J

J

J

J

J

J

J

J

J J
J

J
J
J

F

F

F

F F
F

F
F
F

F F F

E
E
E E

E

E E
E
E
E E E

E E
E
E

H
H H

H
H

H H

H H
H

H
H H

H

H H

M
M
M
M M

M M
M
M
M M M M

M
M M

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

0

50

100

150

200

250

M
FL

O
PS

Transform Size

B FFTW

1 SUNPERF

J CWP

F Krukar

E Nielson

H Singleton

FFTPACK

NR

M Temperton

NAPACK

Mayer

7 Edelblute

2 Beauregard

Figure 2: Comparison of 1D FFTs on a Sun HPC 5000 (167MHz UltraSPARC-I). Compiled
with cc -native -fast -xO5 -dalign. SunOS 5.5.1, cc version 4.0.

5



B

B

B

B

B
B

B

B
B
B

B

B
B B

B
B

1

1

1

1

1 1

1
1

1

1 1 1

1 1

J
J

J

J

J

J

J

J

J

J

J

J

J
J J J

F

F

F

F

F
F F

F F

F F
F

E
E

E E

E
E E

E E E E
E

E E E E

H

H H

H

H

H H

H H
H H

H

H H
H
H

M
M
M
M M

M M
M
M
M
M
M

M M M M
7 7 7 7 7 7 7 7 7 7 7

7 7 7 7

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

0

20

40

60

80

100

120

140

M
FL

O
PS

Transform Size

FFTW

...

B

ESSL1

Figure 3: Comparison of 1D FFTs on an IBM RS/6000, model 3BT, running AIX version
3.2. Compiled with cc -O3 -qarch=pwrx -qtune=pwrx.

6



B

B

B

B

B
B

B B B B

B

B
B B

B
B

1

1

1

1
1

1

1

1

1
1

1

1

1

1 1

1

2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

0

50

100

150

200

250

300

M
FL

O
PS

Transform Size

B FFTW

1 SUNPERF

Figure 4: Comparison of FFTW with the Sun Performance Library on the UltraSPARC for
single precision 1D transforms.

7



B

B

B

B

B B B B B

H

H H

H
H H H H HC

C

C

C C C C C

C

A

A

A

A
A A A A A

Z
Z

Z Z Z Z Z

Z

M

M

M

M
M

M M
M

M

4x
4x

4

8x
8x

8

16
x1

6x
16

32
x3

2x
32

64
x6

4x
64

64
x6

4x
12

8

12
8x

64
x6

4

64
x3

2x
25

6

12
8x

64
x1

28

0

50

100

150

200

250

M
FL

O
PS

Transform Size

B FFTW

H Singleton

C PDA

A NR

Z HARMD

M Temperton

Figure 5: Comparison of 3D FFTs on the UltraSPARC.

8



B

B

B

B
B

B
B

B

B
B

B
B

1
1

1 1

1 1
1

1 1

1 1

4x
4x

4

8x
8x

8

16
x1

6x
16

32
x3

2x
32

64
x6

4x
64

64
x6

4x
12

8

12
8x

64
x6

4

64
x3

2x
25

6

12
8x

64
x1

28

64
x5

12
x6

4

12
8x

12
8x

12
8

12
8x

64
x5

12

0

10

20

30

40

50

60

70

80

90

M
FL

O
PS

Transform Size

B FFTW

1 ESSL

Figure 6: Comparison of 3D transforms from FFTW and the ESSL library on the RS/6000,
in single precision.

9



FFTW The Fastest Fourier Transform in the West
�SUNPERF 1D FFT from the Sun Performance Library (UltraSPARC version)

�ESSL 1D and 3D FFTs from IBM’s ESSL library for the RS/6000. Only the single
precision version of the 3D transform was available to us.

CWP A prime-factor FFT implementation by D. Hale in a C numerical library
from the Colorado School of Mines.

Krukar 1D C FFT by R. H. Krukar.
Nielson Mixed-radix, C FFT by J. J. Nielson.

Singleton Mixed-radix, multidimensional, Fortran FFT by R. C. Singleton [20].
FFTPACK Fortran 1D FFT library by P. N. Swarztrauber [1].

PDA 3D FFT from the Public Domain Algorithms library. Uses FFTPACK for
its 1D FFTs.

NR C FFTs in one or more dimensions from Numerical Recipes in C [2].
Temperton Fortran FFT in one and three dimensions by C. Temperton [21].
NAPACK Fortran FFT from the free NAPACK library.

Mayer 1D C FFT by R. Mayer.
Edelblute 1D C FFT by D. Edelblute and R. Mayer.

Beauregard 1D C FFT by G. Beauregard.
HARMD 3D Fortran FFT, author unknown.

Table 1: Description of the programs benchmarked. All codes are generally available except
for the entries marked with an asterisk, which are proprietary codes optimized for particular
machines.

10



of iterations to get the time required for a single transform. After each FFT, however, it
is necessary to reinitialize the array being transformed (iteration of the DFT is a diverging
process). The time for these reinitializations is measured separately and subtracted from the
elapsed time mentioned above.

Instead of reinitializing the input array after each transform, one could alternatively fol-
low the transform by the inverse transform in every iteration. Many FFT implementations
compute an unnormalized DFT, however, and thus it would be necessary to have an addi-
tional loop to scale the data properly. We did not want to measure this additional cost, since
in many applications the scale factor can easily be absorbed into other multiplicative factors
to avoid the extra multiplications and loads.

It was our intention to benchmark C FFTs, but much of the public-domain software was
written in Fortran. These codes were converted to C via the free f2c software [22]. This
raises some legitimate concerns about the quality of the automatic translation performed
by f2c, as well as the relative quality of Fortran and C compilers. Accordingly, we com-
pared the original Fortran FFTPACK with the f2c version. On average, the C code was
16% slower than the Fortran version on the RS/6000 and 27% slower on the UltraSPARC.
The Fortran code was never faster than FFTW. We will give more results for native Fortran
software in the final paper.

3 The codelet generator

In this section we describe the codelet generator, that produces optimized C codelets. It is
written in Caml Light [4] because it is easy to express symbolic manipulations in that lan-
guage. Because of this automatic generation process, it is easy to produce and experiment
with long straight-line code. The generator performs many optimizations such as constant
folding and minus-sign propagation.

The codelet generator accepts as input an integer n, and produces a fragment of C code
that computes the Fourier transform of size n (a codelet). Depending on the options with
which the generator is invoked, the codelet computes either the forward or the backward
transform, and can optionally multiply its input by a precomputed set of twiddle factors.
The codelet generator is written in the Caml Light dialect of ML [4]. Caml is an applicative,
polymorphic, and strongly-typed functional language with first-class functions, algebraic
data types, and pattern matching.

The codelet generator operates on a subset of C’s abstract syntax tree (AST). It first pro-
duces an AST for a naı̈ve program that computes the transform, and then applies local opti-
mizations to the AST in order to improve the program. Finally, it unparses the AST to pro-
duce the desired C code. The interface between the first phase (generation of the AST) and

11



let fftgen_prime N input output =
let expr k = (Sigma 0 N (fun n ->

let coeff = CExp(k * n / N)
in CTimes coeff (input n)))

and FFT =
forall 0 N (fun k ->

(output k (expr k)))
in FFT ;;

Figure 7: Caml program that generates the AST of a transform of size N , when N is prime.
The kth output (denoted by (expr k) in the program) is the sum (Sigma) for n ranging
from 0 to N�1 of the nth input multiplied by a certain coefficient (coeff). The AST FFT
contains a program that outputs the kth element of the transform, for all k ranging from 0

to N � 1. The operator forall concatenates many ASTs into one.

the following phases is such that the AST can be expressed in terms of complex arithmetic,
and the reduction to an AST that uses only real arithmetic is performed automatically.

In the rest of the section, we shall describe the AST generation phase and the optimizer.
The unparser is rather uninteresting, and we will not bother to describe it.

The AST generation phase creates a crude AST for the desired codelet. This AST con-
tains a lot of useless code, such as multiplications by 0 and 1, but the code is polished by the
following optimization phase. The AST generator uses the Cooley-Tukey algorithm [3] in
the form presented by [6, page 611]. We assume that the reader is familiar with this well-
known algorithm. The actual implementation of the AST generator consists of about 60
lines of code. With 20 additional lines of code our generator can also produce an AST for
the Prime Factor algorithm [8] as described in [6, page 619].

Recall that the Cooley-Tukey algorithm reduces a transform of size N = N1N2 to N1

transforms of sizeN2, followed by some multiplications by certain complex constants called
twiddle factors, followed by N2 transforms of size N1. If N is prime, the algorithm com-
putes the transform directly according to the definition. The AST generator is an almost
literal transcription of this algorithm. It consists of a recursive function genfft that takes
three arguments: the size N of the transform and two functionsinput andoutput. When
applied to an integer n, the input function returns a complex expression that contains the
nth input value. (A complex expression is a pair of ASTs representing the real and imagi-
nary parts of the input in symbolic form.) Similarly, the function output can be applied to
two arguments k and x and returns an AST that stores the expression x into the kth output
variable. Because of lack of space, we do not show the recursive part of fftgen, but we
do show the base case of the recursion in Figure 7.

12



All factors N1 and N2 of N may seem equivalent, but some factors are more equivalent
than others. One natural choice is to let N1 be the smallest prime factor ofN , but it turns out
that if N1 is a factor of N close to

p
N the resulting codelet is faster. One reason is that the

codelet performs fewer arithmetic operations (although we do not fully understand why).
Another reason is that the codelet is more likely to take advantage of the large register sets
of modern superscalar processors, as we shall now illustrate with an example. Suppose that
a transform of size 16 is desired, but the processor can only compute a transform of size 4
using internal registers. If we choose N1 = N2 = 4, than the processor can load the input
once from memory, compute 4 transforms of size 4 storing the result back into memory,
and then do the same thing again. In total, the input is read twice. It is easy to see that if we
let N1 = 2, we force the processor to read the input array three times. Within our codelet
generator, this trick could be implemented in just a few minutes.

We now describe the optimizer. The goal of the optimizer is to transform a raw AST
into an equivalent one that executes much faster. The optimizer consists of a set of rules
that are applied locally to all nodes of an AST. Most of the rules are pretty obvious, such as
“a+ 0) a” and the like, but some rules are far more subtle. We now give an example of
how the rules are implemented in the actual codelet generator, and then we discuss some of
the more subtle rules that we found useful.

Figure 8 shows a fragment of the actual implementation of the optimizer. The pattern-
matching features of Caml Light turned out to be particularly useful for this purpose. By
looking at the example, the reader can convince herself that a sufficiently powerful optimizer
can be implemented quite easily [23, page 108].

By playing with the optimizer we found some interesting rules to make the codelets
faster. Consider for example the two fragments of code in Figure 9. At first glance, it ap-
pears that the two fragments should perform comparably. After all, both contain the same
number and type of arithmetic operations, and in the same order (subtractions and additions
are performed by the same hardware, and are thus equivalent when talking about perfor-
mance). The fragment on the right executes faster on all processors we have tried, however.
The reason is that floating-point constants are not created out of thin air, but must be stored
somewhere in memory. The fragment on the right loads the constant 0:5 only once, while
the code on the left must load both 0:5 and �0:5 from memory. As a rule, the optimizer
makes all constants positive and propagates the minus sign to the rest of the AST. We found
that this rule typically yielded a speed improvement of about 10–15%.

Another interesting result that arose from our investigations is shown in Figure 10. Con-
ventional wisdom [24, page 84] dictates that the common subexpression c + d be pre-
computed and stored into a temporary variable, as shown in the right part of the figure. On
the contrary, we found that this transformation does not produce faster code on present-day

13



let simplify_times = fun
(Real a) (Real b) -> (Real (a *. b))

| a (Real b) ->
simplify_times (Real b) a

| (Uminus a) b ->
simplify (Uminus (Times (a,b)))

| a (Uminus b) ->
simplify (Uminus (Times (a,b)))

| (Real a) b ->
if (almost_equal a 0.0)

then (Real 0.0)
else if (almost_equal a 1.0) then b
else if (almost_equal a (-1.0))

then simplify (Uminus b)
else Times ((Real a), b)

| a b -> Times (a, b)

Figure 8: Example of the rules that constitute the optimizer. The function shown in the
figure simplifies the product of two factors. If both factors are real numbers, the optimizer
replaces the multiplication by a single real number. Minus signs are propagated up, so that
another set of rules (not shown) can collapse two consecutive minus signs. Multiplications
by constants can be simplified when the constant is 0, 1 or �1.

compilers. Indeed, in some cases we found that the elimination of the common subexpres-
sion produced slower code. The reason for this behavior is not clear. From our understand-
ing at this point, a C compiler may unnecessarily waste registers when temporary variables
are declared explicitly.

4 Conclusions

This paper described the design and the performance of FFTW, a self-optimizing library for
computing the one- and multidimensional complex discrete Fourier transform.

The current version of FFTW extends the program described in this paper in several
directions. We have written three parallel versions, using Cilk [5], Posix threads [25] and
MPI [26]. We also support multidimensional real-complex transforms. FFTW has now a
mechanism to save plans to disk, and can use fragments of plans in order to reduce the plan-
ning time.

14



a = 0.5 * b;
c = -0.5 * d;
e = 1.0 + a;
f = 1.0 + c;

a = 0.5 * b;
c = 0.5 * d;
e = 1.0 + a;
f = 1.0 - c;

Figure 9: Two fragments of C code containing the same number and type of arithmetic op-
erations, in the same order. Nonetheless, the fragment on the right is faster. See the text for
an explanation.

a = b + (c + d);
e = f + (c + d);

{
double tmp =

c + d;
a = b + tmp;
e = f + tmp;

}

Figure 10: Two equivalent fragments of C code; the fragment on the right explicitly stores
the common subexpression into a temporary variable. We found that, on modern compilers,
the fragment on the left is not slower than the one in the right, and in some cases it is faster.

FFTW has enjoyed excellent acceptance in the Internet community. It was downloaded
by more than 600 users in the first month after its release, many of whom have reported sig-
nificant speedups in their applications. It has continued to gain users, and is now part of the
netlib repository of scientific software. FFTW has been adopted in the FFT component
of the Ptolemy project [27], a software environment for signal processing and simulation.
In addition, the VSIP (Vector/Signal/Image Processing Forum) committee is discussing the
possibility of incorporating FFTW into the VSIP reference implementation as an example
of how to use FFTs that have an optimize/initialization phase before first use. Their goal is
to define an industry-standard API for vector, signal, and image processing primitives for
embedded real-time signal processing systems.

5 Acknowledgements

We are grateful to SUN Microsystems Inc., which donated the cluster of 9 8-processor Ultra
HPC 5000 SMPs that served as the primary platform for the development of FFTW.

Prof. Charles E. Leiserson of MIT provided continuous support and encouragement.
Charles also proposed the name ‘codelets’ and is responsible for
(n log n) of the commas,
that appear in this paper.

15



References

[1] P. N. Swarztrauber, “Vectorizing the FFTs,” Parallel Computations, pp. 51–83, 1982.
G. Rodrigue ed.

[2] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes
in C: The Art of Scientific Computing. New York, NY: Cambridge University Press,
2nd ed., 1992.

[3] J. W. Cooley and J. W. Tukey, “An algorithm for the machine computation of the com-
plex Fourier series,” Mathematics of Computation, vol. 19, pp. 297–301, Apr. 1965.

[4] X. Leroy, The Caml Light system release 0.71. Institut National de Recherche en In-
formatique at Automatique (INRIA), Mar. 1996.

[5] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and
Y. Zhou, “Cilk: An efficient multithreaded runtime system,” in Proceedings of the
Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), (Santa Barbara, California), pp. 207–216, July 1995.

[6] A. V. Oppenheim and R. W. Schafer, Discrete-time Signal Processing. Englewood
Cliffs, NJ 07632: Prentice-Hall, 1989.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. Cam-
bridge, Massachusetts: The MIT Press, 1990.

[8] I. J. Good, “The interaction algorithm and practical Fourier analysis,” J. Roy. Statist.
Soc., vol. B 20, pp. 361–372, 1958.

[9] P. Duhamel and M. Vetterli, “Fast Fourier transforms: a tutorial review and a state of
the art,” Signal Processing, vol. 19, pp. 259–299, Apr. 1990.

[10] I. Selesnick and C. S. Burrus, “Automatic generation of prime length FFT programs,”
IEEE Transactions on Signal Processing, pp. 14–24, Jan. 1996.

[11] F. Perez and T. Takaoka, “A prime factor FFT algorithm implementation using a pro-
gram generation technique,” IEEE Transactions on Acoustics, Speech and Signal Pro-
cessing, vol. 35, pp. 1221–1223, August 1987.

[12] H. W. Johnson and C. S. Burrus, “The design of optimal DFT algorithms using dy-
namic programming,” IEEE Transactions on Acoustics, Speech and Signal Process-
ing, vol. 31, pp. 378–387, Apr. 1983.

16



[13] J.-W. Hong and H. T. Kung, “I/O complexity: the red-blue pebbling game,” in Pro-
ceedings of the Thirteenth Annual ACM Symposium on Theory of Computing, (Mil-
waukee), pp. 326–333, 1981.

[14] J. E. Savage, “Space-time tradeoffs in memory hierarchies,” Tech. Rep. CS 93-08,
Brown University, CS Dept., Providence, RI 02912, October 1993.

[15] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, and K. H. Randall, “An anal-
ysis of dag-consistent distributed shared-memory algorithms,” in Proceedings of the
Eighth Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA),
(Padua, Italy), pp. 297–308, June 1996.

[16] J. W. Cooley, P. A. W. Lewis, and P. D. Welch, “The Fast Fourier Transform algorithm
and its applications,” IBM Research, 1967.

[17] C. V. Loan, Computational Frameworks for the Fast Fourier Transform. Philadelphia:
SIAM, 1992.

[18] C. Temperton, “Implementation of a self-sorting in-place prime factor FFT algorithm,”
Journal of Computational Physics, vol. 58, pp. 283–299, May 1985.

[19] C. Temperton, “A new set of minimum-add small-n rotated DFT modules,” Journal
of Computational Physics, vol. 75, pp. 190–198, 1988.

[20] R. C. Singleton, “An algorithm for computing the mixed radix fast Fourier trans-
form.,” IEEE Transactions on Audio and Electroacoustics, vol. AU-17, pp. 93–103,
June 1969.

[21] C. Temperton, “A generalized prime factor FFT algorithm for any n = 2p3q5r,” SIAM
Journal on Scientific and Statistical Computing, vol. 13, pp. 676–686, May 1992.

[22] S. I. Feldman, D. M. Gay, M. W. Maimone, and N. L. Schryer, “A Fortran to C con-
verter,” Tech. Rep. 149, AT&T Bell Laboratories, 1995.

[23] H. Abelson and G. J. Sussman, Structure and Interpretation of Computer Programs.
Cambridge, MA: MIT Press, 1985.

[24] J. L. Bentley, Writing Efficient Programs. Englewood Cliffs, NJ 07632: Prentice-Hall
Software Series, 1982.

[25] D. R. Butenhof, Programming with POSIX threads. Addison-Wesley, 1997.

17



[26] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI: The Complete
Reference. MIT Press, 1995.

[27] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A framework for
simulating and prototyping heterogeneous systems,” Int. Journal of Computer Simu-
lation, vol. 4, pp. 155–182, Apr. 1994.

18


