The Fastest Fourier Transform in the West

(MIT-LCS-TR-728)

Matteo Frigo® Steven G. Johnson?

Massachusetts I nstitute of Technology

September 11, 1997

Matteo Frigo was supported in part by the Defense Advanced Research Projects Agency (DARPA) under
Grant N00014-94-1-0985. Steven G. Johnson was supported in part by a DoD NDSEG Fellowship, an MIT
Karl Taylor Compton Fellowship, and by the M aterials Research Science and Engineering Center program of
the National Science Foundation under award DMR-9400334.

This paper is atechnical report of the MIT Labroratory for Computer Science MIT-LCS-TR-728

IMIT Laboratory for Computer Science, 545 Technology Square NE43-203, Cambridge, MA
02139. at hena@heory.lcs.mt. edu
2Massachusetts Institute of Technology, 77 Massachusetts Avenue, 12-104, Cambridge, MA

02139. st evenj @i t . edu

Abstract

This paper describes FFTW, a portable C package for computing the one- and multidimen-
sona complex discrete Fourier transform (DFT). FFTW is typicaly faster than al other
publicly available DFT software, including the well-known FFTPACK and the code from
Numerical Recipes. More interestingly, FFTW is competitive with or better than propri-
etary, highly-tuned codes such as Sun’sPerformanceLibrary and IBM’sESSL library. FFTW
implements the Cooley-Tukey fast Fourier transform, and is freely available on the Web at
http://theory.lcs.mt.edu/"fftw

Three main ideas are the keys to FFTW’s performance. First, the computation of the
transform is performed by an executor consisting of highly-optimized, composable blocks
of C code called codelets. Second, at runtime, a planner finds an efficient way (called a
‘plan’) to compose the codel ets. Through the planner, FFTW adaptsitself to the architecture
of themachineit isrunningon. Third, the codel ets are automatically generated by acodel et
generator written in the Caml Light dialect of ML. The codelet generator produces long,
optimized, unreadable code, which is neverthel ess easy to modify viasimple changesto the
generator.

Keywords. Fast Fourier transform, high performance, ML, code generation.

1 Introduction

This paper describes FFTW, a portable C package for computing the one- and multidimen-
sional complex discrete Fourier transform (DFT). Extensive benchmarking demonstrates
that FFTW istypically faster than all other publicly available DFT software, including the
well-known FFTPACK [1] and the code from Numerical Recipes[2]. More interestingly,
FFTW iscompetitive with or better than proprietary, highly-tuned codes such as Sun’s Per-
formance Library and IBM’s ESSL library. FFTW is an implementation of the Cooley-
Tukey [3] fast Fourier transform (FFT), and is freely available on the World Wide Web at
theURL http://theory.lcs. mt.edu/ "fftw

Three main ideas are the keys to FFTW’s performance. First, the computation of the
transform is performed by an executor consisting of highly-optimized, composable blocks
of C codecalled codelets. Second, at runtime, aplanner findsan efficient way (called aplan)
to compose the codelets. Through the planner, FFTW adaptsitself to the architecture of the
machine it is running on. In thisway, FFTW is a single program that performs efficiently
on avariety of architectures. Third, the codelets are automatically generated by a codelet
generator writteninthe Caml Light dialect of ML [4]. The codelet generator producesliong,
optimized, unreadable code, which is neverthel ess easy to modify viasimple changesto the
generator.

Despiteitsinterna complexity, FFTW is easy to use. (See Figure1l.) The user interacts
with FFTW only through the planner and the executor; the codel et generator isnot used after
compile-time. FFTW providesafunctionthat createsaplan for atransform of acertain size.
Once the user has created a plan, she can use the plan as many times as needed. FFTW is
not restricted to transformswhose size is a power of 2. A parallel version of the executor,
writtenin Cilk [5], also exists.

The executor implementsthe well-known Cooley-Tukey algorithm [3], which works by
factoringthesize V of thetransforminto N = N; N,. Thealgorithm then recursively com-
putes N, transformsof size N, and NV, transformsof size V;. The base case of therecursion
ishandled by the codel ets, which are hard-coded transformsfor varioussmall sizes. We em-
phasize that the executor works by explicit recursion, in sharp contrast with the traditional
loop-based implementations [6, page 608]. The recursive divide-and-conquer approach is
superior on modern machines, because it exploits all levels of the memory hierarchy: as
soon as a subproblem fits into cache, no further cache misses are needed in order to solve
that subproblem. Our results contradict the folk theorem that recursion is slow. Moreover,
the divide-and-conquer approach parallelizes naturally in Cilk.

The Cooley-Tukey algorithm allows arbitrary choices for the factors V; and N, of V.
The best choice depends upon hardware details like the number of registers, latency and
throughput of instructions, size and associativity of caches, structure of the processor pipeline,

1

fftw_plan plan;
int n = 1024;
COVWPLEX Al n], B[n];

/* plan the conputation */
plan = fftw create_plan(n);

/| * execute the plan */
fftw(plan, A);

/* the plan can be reused for other inputs
of size n */
fftw(plan, B);

Figure 1: Simplified example of FFTW’s use. The user must first create a plan, which can
be then used at will. In the actual code, there are a few other parameters that specify the
direction, dimensionality, and other details of the transform.

etc. Most high-performance codes are tuned for aparticular set of these parameters. In con-
trast, FFTW is capable of optimizing itself a runtimethrough the planner, and thereforethe
same code can achieve good performance on many architectures. We can imagine the plan-
ner astrying all factorizationsof N supported by the available codel ets, measuring their exe-
cution times, and selecting the best. In practice, the number of possible plansistoo largefor
an exhaustive search. In order to prune the search, we assume that the optimal solution for
aproblem of size V isstill optimal when used as asubroutine of alarger problem. With this
assumption, the planner can use a dynamic-programming [7, chapter 16] algorithm to find
a solution that, while not optimal, is sufficiently good for practical purposes. The solution
isexpressed in the form of byte-code that can be interpreted by the executor with negligible
overhead. Our results contradict the folk theorem that byte-codeis slow.

The codelet generator produces C subroutines (codel ets) that compute the transform of
agiven (small) size. Internally, the generator itself implementsthe Cooley-Tukey algorithm
in symbolic arithmetic, the result of whichisthen ssmplified and unparsed to C. The simpli-
fication phase applies to the code many transformations that an experienced hacker would
perform by hand. The advantage of generating codeletsin thisway istwofold. First, wecan
use much higher radices than are practical to implement manually (for example, radix-32
tends to be faster than smaller radices on RISC processors). Second, we can easily exper-
iment with diverse optimizations and algorithmic variations. For example, it was easy to
add support for primefactor FFT algorithms (see[8] and [6, page 619]) within the codel ets.

A huge body of previous work on the Fourier transform exists, which we do not have
space to reference properly. We limit oursel ves to mention some referencesthat are impor-
tant to the present paper. A good tutorial on the FFT can befoundin[9] or in classical text-
bookssuch as[6]. Previouswork exists on automatic generation of FFT programs: [10] de-
scribes the generation of FFT programs for prime sizes, and [11] presents a generator of
Pascal programsimplementing a Prime Factor algorithm. Johnson and Burrus[12] first ap-
plied dynamic programming to the design of optimal DFT modules. Although these papers
all deal with the arithmetic complexity of the FFT, we are not aware of previouswork where
these techniques are used to maximize the actua performance of a program. The behavior
of the FFT in the presence of nonuniform memory was first studied by [13]. Savage [14]
gives an asymptotically optimal strategy for minimizing the memory traffic of the FFT un-
der very general conditions. Our divide-and-conquer strategy is similiar in spirit to Sav-
age' s approach. The details of our implementation are asymptotically suboptimal but faster
in practice. Some other theoretical evidence in support of recursive divide-and-conquer al-
gorithmsfor improving locality can be found in [15].

In this short paper we do not have space to give more details about the planner and the
executor. Instead, in Section 2 we present performance comparisons between FFTW and
various other programs. In Section 3, we discuss the codel et generator and its optimization
strategy. Finaly, in Section 4 we give some concluding remarks.

2 Performanceresults

In this section, we present the result of benchmarking FFTW against many public-domain
and afew proprietary codes. From the results of our benchmark, FFTW appears to be the
fastest portable FFT implementation for amost all transform sizes. Indeed, its performance
is competitive with that of the vendor-optimized Sun Performance and ESSL libraries on
the UltraSPARC and the RS/6000, respectively. At the end of the section we describe our
benchmark methodol ogy.

It is impossible to include the benchmark results for al machines here. Instead, we
present the data from two machines: a 167-MHz Sun UltraSPARC-1 and an IBM RS/6000
Model 3BT (Figures 2 through 6). Data from other machines are similar and can be found
on our web site, aswell asresultsfor transformswhose size isnot apower of 2. The perfor-
mance results are given as a graph of the speed of the transform in MFLOPS versus array
size for both one and three dimensional transforms. The MFLOPS count is computed by
postul ating the number of floating point operationsto be 5 N log, N, where NV isthe number
of complex values being transformed (see [16, page 23] and [17, page 45]). This metricis
imprecise becauseit refersonly to radix-2 Cooley-Tukey algorithms. Nonetheless, it allows

our numbersto be compared with other resultsin the literature[1]. Except where otherwise
noted, al benchmarks were performed in double precision. A complete listing of the FFT
implementations included in the benchmark is given in Table 1.

Figure 2 shows the results on a 167MHz UltraSPARC-I. FFTW outperforms the Sun
Performance Library for large transformsin double precision, athough Sun's software is
faster for sizesbetween 128 and 2048. Insingle precision (Figure4) FFTW issuperior over
the entire range. On the RS/6000 FFTW is aways comparable or faster than IBM’s ESSL
library, as shown in Figures 3 and 6. The high priority that was given to memory locality in
FFTW’s design is evident in the benchmark results for large, one-dimensional transforms,
for which the cache size is exceeded. Especially dramatic is the factor of three contrast on
the RS/6000 (Figure 3) between FFTW and most of the other codes (with the exception of
CWP, discussed below, and ESSL, which is optimized for this machine). This trend also
appeared on most of the other hardware that we benchmarked.

A notable programistheonelabelled * CWP' in the graphs, which sometimes surpasses
the speed of FFTW for large transforms. Unlike all other programs we tried, CWP uses a
prime-factor algorithm [18, 19] instead of the Cooley-Tukey FFT. CWP works only on a
restricted set of transform sizes. Consequently, the benchmark actually timesit for atrans-
form whose size (chosen by CWP) isdightly larger than that used by the rest of the codes.
We chose to includeit on the graph since, for many applications, the exact size of the trans-
formisunimportant. Thereader should be aware that the point-to-point comparison of CWP
with other codes may be meaningless. CWP is solving a bigger problem and, on the other
hand, it is choosing a problem size it can solve efficiently.

Theresultsof aparticular benchmark run were never entirely reproducible. Usually, the
differencesfrom run to run were 5% or less, but small changesin the benchmark could pro-
duce much larger variationsin performance, which proved to be very sensitive to the align-
ment of code and data in memory. We were able to produce changes of up to 10% in the
benchmark results by playing with the data alignment (e.g. by adding small integersto the
array sizes). More alarmingly, changesto asingle line of code of one FFT could occasion-
ally affect the performance of another FFT by more than 10%. The most egregious offender
inthisrespect was one of our Pentium Pro machinesrunning Linux 2.0.17 and thegcc 2.7.2
compiler. On this machine, the insertion of asingle line of code into FFTW dowed down
acompletely unrelated FFT (CWP) by amost a factor of twenty. Consequently, we do not
dareto publish any datafrom this machine. We do not completely understand why the per-
formance Pentium Pro varies so dramatically. Nonethel ess, on the other machineswetried,
the overal trends are consistent enough to give us confidence in the qualitative results of
the benchmarks.

Our benchmark program works as follows. The benchmark uses each FFT subroutine
to compute the DFT many times, measures the elapsed time, and divides by the number

4

—m— FFTW —o— NR

—— SUNPERF —%— Temperton

—e— CWP X NAPACK
—o— Krukar —O— Mayer
Nielson Edelblute

—a— Singleton —— Beauregard

—A— FFTPACK

Transform Size

Figure2: Comparison of 1D FFTson aSun HPC 5000 (167MHz UltraSPARC-1). Compiled
withcc -native -fast -x06 -dalign.SunOS5.5.1, cc version 4.0.

140

120: —&— FFTW

- —%— ESSL
100
P 80—
O ,

T

S 60
40
20]
0

111t 117 1 1T T 1 1"

N < 00 © O© N < o0 © o0 O

"HINREEZEEEEE

— M O

Transform Size

Figure 3: Comparison of 1D FFTson an IBM RS/6000, model 3BT, running Al X version
3.2. Compiledwithcc - 33 - qgarch=pw x - gt une=pw X.

- —m— FFTW
250 —s— SUNPERF
200

£
O 150
LL i
=]
100
50
o

T

N < 0 © N < O N < 00 © 0 O

“83REEEEEEE G

Transform Size

Figure 4: Comparison of FFTW with the Sun Performance Library on the UltraSPARC for
single precision 1D transforms.

FFTW
—a— Singleton

—]

—%— Temperton

82TXy9X8CT

9GCXCEXY9

POXyOX8CT

8ZTXP9Xy9

POXyOXy9

CEXTEXCE

9TX9TX9T

8X8X8

PXPXy

Transform Size

Figure5: Comparison of 3D FFTs on the UltraSPARC.

CTSXY9XBCT

8CTX8CTX8CT

FFTW

POXCTGXr9

8CTXYOX8CT

——
—— ESSL

9GCXCEXY9

VOXyOX8CT

8CTXYIX9

POXyOXy9

CEXCEXCE

9TXOTX9T

8X8X8

PXyXy

o Q o Q Q Q Q o o o
(e} [e0} N~ © Lo < o™ N —

SdO 4N

Transform Size
Figure 6: Comparison of 3D transformsfrom FFTW and the ESSL library on the RS/6000,

in single precision.

FFTW
*SUNPERF
*ESSL

CWP

Krukar
Nielson
Singleton
FFTPACK
PDA

NR
Temperton
NAPACK
Mayer
Edelblute
Beauregard
HARMD

The Fastest Fourier Transform in the West

1D FFT from the Sun Performance Library (UltraSPARC version)

1D and 3D FFTsfromIBM'sESSL library for the RS§/6000. Only thesingle
precision version of the 3D transform was availableto us.

A prime-factor FFT implementation by D. Hale in a C numerical library
from the Colorado School of Mines.

1D CFFT by R. H. Krukar.

Mixed-radix, C FFT by J. J. Nielson.

Mixed-radix, multidimensional, Fortran FFT by R. C. Singleton [20].
Fortran 1D FFT library by P. N. Swarztrauber [1].

3D FFT from the Public Domain Algorithms library. Uses FFTPACK for
its1D FFTs.

C FFTsin one or more dimensions from Numerical Recipesin C[2].
Fortran FFT in one and three dimensions by C. Temperton [21].

Fortran FFT from the free NAPACK library.

1D C FFT by R. Mayer.

1D C FFT by D. Edelblute and R. Mayer.

1D C FFT by G. Beauregard.

3D Fortran FFT, author unknown.

Table1: Description of the programsbenchmarked. All codesaregenerally availableexcept
for the entries marked with an asterisk, which are proprietary codes optimized for particular
machines.

10

of iterations to get the time required for a single transform. After each FFT, however, it
is necessary to reinitialize the array being transformed (iteration of the DFT isadiverging
process). Thetimefor thesereinitializationsis measured separately and subtracted fromthe
elapsed time mentioned above.

Instead of reinitializing the input array after each transform, one could alternatively fol-
low the transform by the inverse transform in every iteration. Many FFT implementations
compute an unnormalized DFT, however, and thus it would be necessary to have an addi-
tional loop to scale the data properly. We did not want to measure this additional cost, since
in many applicationsthe scale factor can easily be absorbed into other multiplicativefactors
to avoid the extra multiplications and |oads.

It was our intention to benchmark C FFTs, but much of the public-domain software was
written in Fortran. These codes were converted to C viathe freef 2¢ software [22]. This
raises some legitimate concerns about the quality of the automatic trandation performed
by f 2c, aswell astherelative quality of Fortran and C compilers. Accordingly, we com-
pared the original Fortran FFTPACK with the f 2c version. On average, the C code was
16% dower than the Fortran version on the RS/6000 and 27% slower on the UltraSPARC.
The Fortran code was never faster than FFTW. We will give more resultsfor native Fortran
softwarein the final paper.

3 Thecodeet generator

In this section we describe the codelet generator, that produces optimized C codelets. It is
written in Caml Light [4] because it is easy to express symbolic manipulationsin that lan-
guage. Because of this automatic generation process, it is easy to produce and experiment
with long straight-line code. The generator performs many optimizations such as constant
folding and minus-sign propagation.

The codelet generator accepts as input an integer », and produces a fragment of C code
that computes the Fourier transform of size n (a codelet). Depending on the options with
which the generator is invoked, the codelet computes either the forward or the backward
transform, and can optionally multiply its input by a precomputed set of twiddle factors.
The codel et generator iswritteninthe Caml Light dialect of ML [4]. Caml isan applicative,
polymorphic, and strongly-typed functional language with first-class functions, algebraic
datatypes, and pattern matching.

The codel et generator operates on asubset of C's abstract syntax tree (AST). It first pro-
ducesan AST for anaive program that computes the transform, and then applieslocal opti-
mizationsto the AST in order to improve the program. Finally, it unparsesthe AST to pro-
duce thedesired C code. The interface between the first phase (generation of the AST) and

11

let fftgen_prine N input output =

let expr kK = (Sigma O N (fun n ->
let coeff = CExp(k * n/ N)
in CTinmes coeff (input n)))

and FFT =

forall O N (fun k ->

(out put k (expr k)))

in FFT ;;

Figure7: Caml program that generatesthe AST of atransform of size V, when V isprime.
The kth output (denoted by (expr k) inthe program) isthe sum (Si grma) for » ranging
from0to N — 1 of thenth input multiplied by a certain coefficient (coef f). The AST FFT
contains a program that outputs the £th element of the transform, for all % ranging from 0
to N — 1. The operator f or al | concatenates many ASTsinto one.

thefollowing phases is such that the AST can be expressed in terms of complex arithmetic,
and the reduction to an AST that uses only real arithmetic is performed automatically.

In the rest of the section, we shall describe the AST generation phase and the optimizer.
The unparser is rather uninteresting, and we will not bother to describeit.

The AST generation phase creates a crude AST for the desired codelet. This AST con-
tainsalot of useless code, such asmultiplicationsby 0 and 1, but the codeis polished by the
following optimization phase. The AST generator uses the Cooley-Tukey algorithm [3] in
the form presented by [6, page 611]. We assume that the reader is familiar with this well-
known algorithm. The actual implementation of the AST generator consists of about 60
lines of code. With 20 additional lines of code our generator can also produce an AST for
the Prime Factor algorithm [8] as described in [6, page 619].

Recall that the Cooley-Tukey algorithm reduces atransform of size N = NN, to V;
transformsof size V,, followed by some multiplicationsby certain complex constantscalled
twiddle factors, followed by N, transformsof size NV;. If N is prime, the algorithm com-
putes the transform directly according to the definition. The AST generator is an almost
literal transcription of thisalgorithm. It consists of arecursivefunctiongenf f t that takes
three arguments: the size N of the transform and two functionsi nput andout put . When
applied to an integer n, thei nput function returns a complex expression that contains the
nth input value. (A complex expression isa pair of ASTs representing the real and imagi-
nary partsof theinputin symbolicform.) Similarly, thefunction out put canbeappliedto
two argumentsk and x and returnsan AST that stores the expression z into the £th output
variable. Because of lack of space, we do not show the recursive part of f f t gen, but we
do show the base case of the recursionin Figure 7.

12

All factors N; and N, of N may seem equivalent, but some factors are more equivalent
than others. One natural choiceistolet N, bethe smallest primefactor of /V, but it turnsout
that if V, isafactor of V closeto /N the resulting codelet isfaster. Onereason isthat the
codelet performs fewer arithmetic operations (although we do not fully understand why).
Another reason isthat the codelet is more likely to take advantage of the large register sets
of modern superscalar processors, aswe shall now illustrate with an example. Suppose that
atransform of size 16 isdesired, but the processor can only compute a transform of size 4
using internal registers. If we choose N; = N, = 4, than the processor can load the input
once from memory, compute 4 transforms of size 4 storing the result back into memory,
and then do the same thing again. Intotal, theinput isread twice. It iseasy to seethat if we
let N; = 2, we force the processor to read the input array three times. Within our codel et
generator, thistrick could be implemented in just a few minutes.

We now describe the optimizer. The goal of the optimizer is to transform araw AST
into an equivalent one that executes much faster. The optimizer consists of a set of rules
that are applied locally to all nodes of an AST. Most of the rulesare pretty obvious, such as
“a + 0 = «” and the like, but some rules are far more subtle. We now give an example of
how the rules areimplemented in the actual codelet generator, and then we discuss some of
the more subtle rules that we found useful.

Figure 8 shows a fragment of the actual implementation of the optimizer. The pattern-
matching features of Caml Light turned out to be particularly useful for this purpose. By
looking at the example, the reader can convince herself that asufficiently powerful optimizer
can be implemented quite easily [23, page 108].

By playing with the optimizer we found some interesting rules to make the codelets
faster. Consider for example the two fragments of code in Figure 9. At first glance, it ap-
pears that the two fragments should perform comparably. After all, both contain the same
number and type of arithmetic operations, and in the same order (subtractionsand additions
are performed by the same hardware, and are thus equivalent when talking about perfor-
mance). The fragment on theright executesfaster on all processorswe havetried, however.
The reason isthat floating-point constants are not created out of thin air, but must be stored
somewhere in memory. The fragment on the right loads the constant 0.5 only once, while
the code on the left must load both 0.5 and —0.5 from memory. As arule, the optimizer
makes all constants positive and propagatesthe minus sign to therest of the AST. We found
that thisruletypically yielded a speed improvement of about 10-15%.

Another interesting result that arosefrom our investigationsisshown in Figure 10. Con-
ventional wisdom [24, page 84] dictates that the common subexpression ¢ + d be pre-
computed and stored into atemporary variable, as shown in the right part of the figure. On
the contrary, we found that this transformation does not produce faster code on present-day

13

let sinplify_times = fun
(Real a) (Real b) -> (Real (a *. b))
| a (Real b) ->
sinplify times (Real b) a
| (Umnmnus a) b ->
sinplify (Umnus (Tinmes (a,b)))
| a (Umnus b) ->
sinmplify (Umnus (Tines (a,b)))
| (Real a) b ->
if (alnost_equal a 0.0)
then (Real 0.0)
else if (alnobst_equal a 1.0) then b
else if (alnost_equal a (-1.0))
then sinplify (Um nus b)
else Tines ((Real a), b)
| ab->Tinmes (a, b)

Figure 8: Example of the rules that congtitute the optimizer. The function shown in the
figure ssimplifies the product of two factors. If both factors are real numbers, the optimizer
replaces the multiplication by a single real number. Minus signs are propagated up, so that
another set of rules (not shown) can collapse two consecutive minussigns. Multiplications
by constants can be simplified when the constant is0, 1 or —1.

compilers. Indeed, in some cases we found that the elimination of the common subexpres-
sion produced slower code. The reason for thisbehavior isnot clear. From our understand-
ing at this point, aC compiler may unnecessarily waste registers when temporary variables
are declared explicitly.

4 Conclusions

This paper described the design and the performance of FFTW, a self-optimizing library for
computing the one- and multidimensional complex discrete Fourier transform.

The current version of FFTW extends the program described in this paper in several
directions. We have written three parallel versions, using Cilk [5], Posix threads [25] and
MPI [26]. We also support multidimensional real-complex transforms. FFTW has now a
mechanism to save plansto disk, and can use fragments of plansin order to reduce the plan-
ning time.

14

a=0.5"%*b; a==05%*pb;
c =-0.5* d; c =0.5* d;
e =1.0 + a; e =1.0 + a;
f =1.0 + c; f =1.0 - c;

Figure 9: Two fragments of C code containing the same number and type of arithmetic op-
erations, in the same order. Nonetheless, the fragment on the right is faster. See the text for
an explanation.

{
double tnmp =
a=>b+ (c +d); c + d;
e=f + (c +d); a=>b + tnp;
e =f + tnp;
}

Figure 10: Two equivalent fragments of C code; the fragment on the right explicitly stores
the common subexpression into atemporary variable. We found that, on modern compilers,
the fragment on the | eft is not Slower than the onein theright, and in some casesit isfaster.

FFTW has enjoyed excellent acceptance in the Internet community. 1t was downloaded
by more than 600 usersin the first month after its release, many of whom have reported sig-
nificant speedups in their applications. 1t has continued to gain users, and isnow part of the
net | i b repository of scientific software. FFTW has been adopted in the FFT component
of the Ptolemy project [27], a software environment for signal processing and simulation.
In addition, the V SIP (Vector/Signal/lmage Processing Forum) committeeis discussing the
possibility of incorporating FFTW into the V SIP reference implementation as an example
of how to use FFTsthat have an optimize/initialization phase beforefirst use. Their goal is
to define an industry-standard API for vector, signal, and image processing primitives for
embedded real-time signal processing systems.

5 Acknowledgements

We are grateful to SUN Microsystems I nc., which donated the cluster of 9 8-processor Ultra
HPC 5000 SMPs that served as the primary platform for the development of FFTW.

Prof. Charles E. Leiserson of MIT provided continuous support and encouragement.
Charles also proposed the name ‘ codelets' and isresponsible for ©2(n log r) of the commas,
that appear in this paper.

15

References

[1] P.N. Swarztrauber, “Vectorizing the FFTs,” Parallel Computations, pp. 51-83, 1982.
G. Rodrigue ed.

[2] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes
in C: The Art of Scientific Computing. New York, NY: Cambridge University Press,
2nd ed., 1992.

[3] J. W. Cooley and J. W. Tukey, “ An agorithm for the machine computation of the com-
plex Fourier series,” Mathematics of Computation, vol. 19, pp. 297-301, Apr. 1965.

[4] X. Leroy, The Caml Light systemrelease 0.71. Institut National de Recherche en In-
formatique at Automatique (INRIA), Mar. 1996.

[5] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and
Y. Zhou, “Cilk: An efficient multithreaded runtime system,” in Proceedings of the
Fifth ACM S GPLAN Symposiumon Principlesand Practice of Parallel Programming
(PPoPP), (SantaBarbara, California), pp. 207-216, July 1995.

[6] A. V. Oppenheim and R. W. Schafer, Discrete-time Sgnal Processing. Englewood
Cliffs, NJ07632: Prentice-Hall, 1989.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. Cam-
bridge, Massachusetts: The MIT Press, 1990.

[8] I. J. Good, “The interaction algorithm and practical Fourier analysis,” J. Roy. Satist.
Soc., vol. B 20, pp. 361-372, 1958.

[9] P. Duhamel and M. Vetterli, “Fast Fourier transforms: atutoria review and a state of
the art,” Sgnal Processing, vol. 19, pp. 259-299, Apr. 1990.

[10] 1. Selesnick and C. S. Burrus, “ Automatic generation of prime length FFT programs,”
|EEE Transactions on Sgnal Processing, pp. 14-24, Jan. 1996.

[11] F. Perez and T. Takaoka, “A primefactor FFT agorithm implementation using apro-
gram generation technique,” | EEE Transactions on Acoustics, Speech and Sgnal Pro-
cessing, vol. 35, pp. 1221-1223, August 1987.

[12] H. W. Johnson and C. S. Burrus, “The design of optima DFT algorithms using dy-
namic programming,” |EEE Transactions on Acoustics, Speech and Sgnal Process-
ing, vol. 31, pp. 378-387, Apr. 1983.

16

[13] J.-W. Hong and H. T. Kung, “I/O complexity: the red-blue pebbling game,” in Pro-
ceedings of the Thirteenth Annual ACM Symposium on Theory of Computing, (Mil-
waukee), pp. 326-333, 1981.

[14] J. E. Savage, “ Space-time tradeoffs in memory hierarchies,” Tech. Rep. CS 93-08,
Brown University, CS Dept., Providence, Rl 02912, October 1993.

[15] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, and K. H. Randall, “An anal-
ysis of dag-consistent distributed shared-memory algorithms,” in Proceedings of the
Eighth Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA),
(Padua, Italy), pp. 297308, June 1996.

[16] J. W. Cooley, P A. W. Lewis, and P. D. Welch, “ The Fast Fourier Transform algorithm
and its applications,” I1BM Research, 1967.

[17] C.V.Loan, Computational Frameworksfor the Fast Fourier Transform. Philadel phia:
SIAM, 1992.

[18] C. Temperton, “Implementation of asalf-sorting in-placeprimefactor FFT algorithm,”
Journal of Computational Physics, vol. 58, pp. 283-299, May 1985.

[19] C. Temperton, “A new set of minimum-add small-» rotated DFT modules,” Journal
of Computational Physics, vol. 75, pp. 190-198, 1988.

[20] R. C. Singleton, “An algorithm for computing the mixed radix fast Fourier trans-
form.,” 1EEE Transactions on Audio and Electroacoustics, vol. AU-17, pp. 93-103,
June 1969.

[21] C. Temperton, “A generalized primefactor FFT algorithmfor any n = 27315",” SAM
Journal on Scientific and Statistical Computing, vol. 13, pp. 676-686, May 1992.

[22] S. 1. Feldman, D. M. Gay, M. W. Maimone, and N. L. Schryer, “A Fortran to C con-
verter,” Tech. Rep. 149, AT& T Bell Laboratories, 1995.

[23] H. Abelson and G. J. Sussman, Structure and Interpretation of Computer Programs.
Cambridge, MA: MIT Press, 1985.

[24] J. L. Bentley, Writing Efficient Programs. Englewood Cliffs, NJ07632: Prentice-Hall
Software Series, 1982.

[25] D. R. Butenhof, Programming with POS X threads. Addison-Wesley, 1997.

17

[26] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI: The Complete
Reference. MIT Press, 1995.

[27] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A framework for
simulating and prototyping heterogeneous systems,” Int. Journal of Computer Smu-
lation, vol. 4, pp. 155-182, Apr. 1994.

18

