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Abstract— FFTW is an implementation of the discrete Fourier of a multi-dimensional array. (Most implementations sup-
transform (DFT) that adapts to the hardware in order to port only a single DFT of contiguous data.)

maximize performance. This paper shows that such an approach | 1w supports DFTs of real data, as well as of real
can yield an implementation that is competitive with hand- tric/anti tric dat | ’ led di t
optimized libraries, and describes the software structure that symmetric/antisymmetric data (also calle Iscrete co-

makes our current FFTW3 version flexible and adaptive. We sine/sine transforms).

further discuss a new algorithm for real-data DFTs of prime size, The interaction of the user with FFTW occurs in two

?S?GV[‘;YYV‘{aytOf itr_nplemen(;inhg DFTs by _mleans of maChi”?l‘sF’eCiﬁC stages: planning, in which FFTW adapts to the hardware,
nstructions, an OW a Special-purpose compiler can : : :

derive optimized imiolementations gf the c[i)isc?ete cosing and sine and execution, in which FFTW performs l'!serI work for the

transforms automatically from a DFT algorithm. user. To compute a DFT, the user first invokes the FFTW

planner, specifying theproblemto be solved. The problem is

a data structure that describes the “shape” of the input data—

array sizes and memory layouts—but does not contain the data

itself. In return, the planner yields @an, an executable data

I. INTRODUCTION structure that accepts the input data and computes the desired

FFTW [1] is a widely used free-software library thatPF T- Afterwards, the user can execute the plan as many times

. . .as desired.
computes the discrete Fourier transform (DFT) and if& . .
putes 'S ur S ( ) ! The FFTW planner works by measuring the actual run time

many different plans and by selecting the fastest one. This
process is analogous to what a programmer would do by hand
%hen tuning a program to a fixed machine, but in FFTW’s case
no manual intervention is required. Because of the repeated
err)erformance measurements, however, the planner tends to be
we-consuming. In performance-critical applications, many

Index Terms—FFT, adaptive software, Fourier transform,
cosine transform, Hartley transform, 1/O tensor.

various special cases. Its performance is competitive even wi
vendor-optimized programs, but unlike these programs, FF
is not tuned to a fixed machine. Instead, FFTW uspkaner
to adapt its algorithms to the hardware in order to maximi
performance. The input to the planner ip@blem a multi-
dimensional loop of multi-dimensional DFTs. The plann

applies a set of rules to recursively decompose a problem i|I| . . .
PP y P P transforms of the same size are typically required, and there-

simpler sub-problems of the same type. “Sufficiently simpl ) . i
P b yp y pj"gre a large one-time cost is usually acceptable. Otherwise,

problems are solved directly by optimized, straight-line co . . .
that is automatically generated by a special-purpose compiIeFrW provides a mode of operation where the planner quickly

This paper describes the overall structure of FFTW as well Eest_ll_lms a “reasonable” plan that is not necessanly the fastest.
he planner generates plans according to rules that recur-

the specific improvements in FFTW3, our latest version. sively decompose a problem into simpler sub-problems. When

FFTW is fast, but its speed does not come at the expenset 0 e - ! N
- . : he problem becomes “sufficiently simple,” FFTW produces
flexibility. In fact, FFTW is probably the most flexible DFTa plan that calls a fragment of optimized straight-line code

library ava|l<'.:1ble.. _ that solves the problem directly. These fragments are called
« FFTW is written in portable C and runs well on manyqdeletsin FFTW’s lingo. You can envision a codelet as
architectures and operating systems. computing a “small” DFT, but many variations and special
« FFTW computes DFTs inO(nlogn) time for any cases exist. For example, a codelet might be specialized to
Iengt.h n. (Most other DF_T implementations are e'theEompute the DFT of real input (as opposed to complex).
restricted to a subset of sizes or they becdife®) for  FETw's speed depends therefore on two factors. First, the
certain values of,, for example whem: is prime.)  decomposition rules must produce a space of plans that is rich
« FFTW imposes no restrictions on the rank (dimensioRmnoygh to contain “good” plans for most machines. Second,
ality) of multi-dimensional transforms. (Most other im-he codelets must be fast, since they ultimately perform all the
plementations are limited to one-dimensional, or at mogt| work.
two- and three-dimensional data.) FFTW’s codelets are generated automatically by a special-
« FFTW supports multiple and/or strided DFTs; for exampyrpose compiler calledenfft . Most users do not interact
ple, to transform a 3-component vector field or a portioith genfft ~ at all: the standard FFTW distribution contains

o _ a set of about 150 pre-generated codelets that cover the most
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rithm, genfft automatically derives an optimized algorithnresult. The most important FFT (and the one primarily used in
for the real-input DFT. We take advantage of this property eFTW) is known as the “Cooley-Tukey” algorithm, after the
implement real-data DFTs (Sectipn VII), as well as to exploftvo authors who rediscovered and popularized it in 1965 [14],
machine-specific “SIMD” instructions (Sectipn|IX). Similarly,although it had been previously known as early as 1805 by
genfft automatically derives codelets for the discrete cosir@auss as well as by later re-inventors [15]. The basic idea
(DCT) and sine (DST) transforms (Sectjon V1II). We summabehind this FFT is that a DFT of a composite size= nin,
rize genfft  in Section[V), while a full description appearscan be re-expressed in terms of smaller DFTs of sizeand
in [2]. ne—essentially, as a two-dimensional DFT of size x no
We have produced three major implementations of FFTWhere the output isransposed The choices of factorizations
each building on the experience of the previous systewf.n, combined with the many different ways to implement the
FFTWL1 [3] (1997) introduced the idea of generating codeletita re-orderings of the transpositions, have led to numerous
automatically, and of letting a planner search for the beishplementation strategies for the Cooley-Tukey FFT, with
combination of codelets. FFTW2 (1998) incorporated a nemany variants distinguished by their own names [16], [17].
version ofgenfft  [2]. genfft did not change much in FFTW implements a space nfanysuch variants, as described
FFTW3 (2003), but the runtime structure was completelater, but here we derive the basic algorithm, identify its key
rewritten to allow for a much larger space of plans. This paptatures, and outline some important historical variations and
describes the main ideas common to all FFTW systems, tieir relation to FFTW.
runtime structure of FFTW3, and the modificationgnfft The Cooley-Tukey algorithm can be derived as follows. If
since FFTW?2. n can be factored inte = nyns, Eq. [1) can be rewritten by
Previous work on adaptive systems includes [3]-[11]. lietting j = jins + j2 andk = ki + kany. We then have:
particular, SPIRAL [9], [10] is another system focused on

optimization of Fourier transforms and related algorithms, Yiky + kam] = @
but it has distinct differences from FFTW. SPIRAL searches me b fratl 1o - -

at compile-time over a space of mathematically equivalent Z Z X[jine + jolwni™ [ wpt™ | wig™ .
formulas expressed in a “tensor-product” language, whereas P2=0 [ \1n=0

FFTW searches at runtime over the formalism discussed Thus, the algorithm computes, DFTs of sizen; (the inner
Sectior] 1V}, which explicitly includes low-level details, such asum), multiplies the result by the so-callédiddle factors
strides and memory alignments, that are not as easily expressgd, and finally computes:; DFTs of sizen, (the outer
using tensor products. SPIRAL generates machine-dependann). This decomposition is then continued recursively. The
code, whereas FFTW's codelets are machine-independéiterature uses the termadix to describe am; or nq that
FFTW's search usedynamic programmingl2, chapter 16], is bounded (often constant); the small DFT of the radix is
while the SPIRAL project has experimented with a wideraditionally called abutterfly.
range of search strategies including machine-learning techMany well-known variations are distinguished by the radix
nigques [13]. alone. Adecimation in timgDIT) algorithm uses:, as the
The remainder of this paper is organized as follows. Wadix, while adecimation in frequencfDIF) algorithm uses:,
begin with a general overview of fast Fourier transforms ias the radix. If multiple radices are used, e.g./iaomposite
Sectior{1). Then, in Section lIl, we compare the performandait not a prime power, the algorithm is callesixed radix
of FFTW and other DFT implementations. Sectjon] IV deA peculiar blending of radix 2 and 4 is callesplit radix,
scribes the space of plans explored by FFTW and how tidich was proposed to minimize the count of arithmetic
FFTW planner works. Section]V describes our experienceperations [16]. (Unfortunately, as we argue in this paper,
in the practical usage of FFTW. Sectipn] VI summarizes hominimal-arithmetic, fixed-factorization implementations tend
genfft  works. Sectiorf VIl explains how FFTW computedo no longer be optimal on recent computer architectures.)
DFTs of real data. Sectiofh V]Il describes hogenfft FFTW implements both DIT and DIF, is mixed-radix with
generates DCT and DST codelets, as well as how FFTkadices that aradaptedto the hardware, and often uses much
handles these transforms in the general case. Sdctjon IX téger radices (radix-32 is typical) than were once common.

how FFTW exploits SIMD instructions. (On the other end of the scale, a “radix” of roughlfn has
been called dour-stepFFT [18], and we have found that one
Il. EET OVERVIEW step of such a radix can be useful for large sizes in FFTW;
see Sectiof TV-DJ1.)

The (forward, one-dimensional) discrete Fourier transform A key difficulty in implementing the Cooley-Tukey FFT is
of an arrayX of n complex numbers is the arrdy given by that then; dimension corresponds to discontiguous inpjijts
_— in X but contiguous outputg; in Y, and vice-versa for..
_ 0 ik This is a matrix transpose for a single decomposition stage,
Yk = ZXMW" ’ @) and the composition of all such transpositions is a (mixed-
base) digit-reversal permutation (bit-reversal for radix-2).
where0 < k < n andw,, = exp(—27v/—1/n). Implemented The resulting necessity of discontiguous memory access and
directly, Eq. ) would requir®(n?) operations; fast Fourier data re-ordering hinders efficient use of hierarchical memory
transforms areO(nlogn) algorithms to compute the samearchitectures (e.g., caches), so that the optimal execution order

J=0
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of an FFT for given hardware is non-obvious, and various
approaches have been proposed. 3500
One ordering distinction is between recursion and iteration.
As expressed above, the Cooley-Tukey algorithm could be 3000
thought of as defining a tree of smaller and smaller DFTs; _
for example, a textbook radix-2 algorithm would divide size é
n into two transforms of size:/2, which are divided into  E 2000
four transforms of size:/4, and so on until a base case is §
reached (in principle, size 1). This might naturally suggest @ 1500
a recursive implementation in which the tree is traversed
“depth-first"—one sizen/2 transform is solved completely /
before processing the other one, and so on. However, most s00%/"
traditional FFT implementations are non-recursive (with rare .
exceptions [19]) and traverse the tree “breadth-first” [17]— % R o

;
Iy
1000 /

. . . . GRREREIESRERRRARS
in the radix-2 example, they would perform (trivial) size- TPPRESRE PGS E
N

1 transforms, them /2 combinations into size-2 transforms,
thenn /4 combinations into size-4 transforms, and so on, thiggy. 1.  comparison of double-precision 1d complex DFTs, power-of-two
makinglog, n passes over the whole array. In contrast, as vsaes, on a 2.8 GHz Pentium IV. Intel C/Fortran compilers v. 7.1, optimization
discuss in Sectiol@]l, FFTW3 employs an explicitly reflags-03 -xW (maximum optimization, enable automatic vectorizer).
cursive strategy that encompasbesh depth-first and breadth-

first styles, favoring the former since it has some theoretic

and practical advantages.

A second ordering distinction lies in how the digit-reversa 2500
is performed. The classic approach is a single, separate di¢
reversal pass following or preceding the arithmetic compt_ 2000
tations. Although this pass requires or}(n) time [20], it é
can still be non-negligible, especially if the data is out-ofE 1500°
cache; moreover, it neglects the possibility that data-reorderifg )
during the transform may improve memory locality. Perhap™ 10009'
the oldest alternative is the Stockhamto-sortFFT [17], [21],
which transforms back and forth between two arrays with eac
butterfly, transposing one digit each time, and was popular
improve contiguity of access for vector computers [22]. Alter
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e--o fftw, nosimd
+— takahashi

—— mkl, out of place
»--+ fftpack
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natively, an explicitly recursive style, as in FFTW, performs o RrreE N w e N GEEABNE
.. . - « » . . N 01 oo OO O QO B 8%%‘83%%
the digit-reversal implicitly at the “leaves” of its computation FerS3HEgs88Y
ol

when operating out-of-place (Sectipn TV-D.1). To operate in-

place withO(1) scratch storage, one can interleave small M@y, 2. comparison of double-precision 1d complex DFTs, non-power-of-two

trix transpositions with the butterflies [23]-[26], and a relateslzes, on a 2.8 GHz Pentium IV. Compiler and flags as in[Hig. 1.

strategy in FFTW is described by Sectjon TV-P.3. FFTW can

also perform intermediate re-orderings that blend its in-place

and out-of-place strategies, as described in Seffiof V-C. tions, on most modern general-purpose processors, comparing
Finally, we should mention that there are many FFTsomplex and real-data transforms in one to three dimensions

entirely distinct from Cooley-Tukey. Three notable such alg@nd for both single and double precisions. We generally found

rithms are theprime-factor algorithnfor ged(ny,n2) = 1[27, FFTW to be superior to other publicly available codes and

page 619], along with Rader’'s [28] and Bluestein's [27;omparable to vendor-tuned libraries. The complete results

[29] algorithms for primen. FFTW implements the first two can be found at [1]. In this section, we present data for a

in its codelet generator for hard-coded (Section[V]) and small sampling of representative codes for complex-data one-

the latter two for general prima. A new generalization of dimensional transforms on a few machines.

Rader’s algorithm for prime-sizeeal-datatransforms is also ~ We show the benchmark results as a series of graphs.

discussed in Sectidn VII. FFTW does not employ the Win@Speed is measured in “MFLOPS,” defined for a transform

grad FFT [30], which minimizes the number of multiplication®f size n as (5nlog, n)/t, wheret is the time inpus for

at the expense of a large number of addditions. (This tradeofie transform, not including one-time initialization costs. This

is not beneficial on current processors that have specializeslint of floating-point operations is based on the asymptotic

hardware multipliers.) number of operations for the radix-2 Cooley-Tukey algorithm
(see [17, page 45]), although the actual count is lower for most
Il. B ENCHMARK RESULTS DFT implementations. The MFLOPS measure should thus be

We have performed extensive benchmarks of FFTW’s perewed as a convenient scaling factor rather than as an absolute
formance, along with that of over 50 other FFT implementandicator of CPU performance.
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Fig. 3. Comparison of single-precision 1d complex DFTs, power-of-twBig. 5. Comparison of double-precision 1d complex DFTs, power-of-

sizes, on a 2.8 GHz Pentium IV. Compiler and flags as in[Hig. 1. Note thato sizes, on an 833MHz Alpha EV6. Compaq C V6.2-505. Compaq
fftpack, which was originally designed for vectorizing compilers (or vicd=ortran X1.0.1-1155. Optimization flagsiewc -w0 -O5 -ansi  _alias
versa), benefits somewhat from the automatic vectorization in this case. -ansi _args -fp _reorder -tune host -arch host
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Fig. 4. Comparison of double-precision 1d complex DFTs, power-of-twbig. 6.  Comparison of single-precision 1d complex DFTs, power-of-two
sizes, on a 2 GHz PowerPC 970 (G5). Apgte v. 3.3,g77 v. 3.4 20031105 Sizes, on an 833 MHz Alpha EV6. Compilers and flags as in[Hig. 5.
(experimental). Optimization flagsO3 -mcpu=970 -mtune=970 . The

Apple vDSP library uses separate reallimaginary arrays to store complex

numbers, and therefore its performance is not stricly comparable with the .

other codes, which use an array of reallimaginary pairs. results on the same machine.

In addition to FFTW v. 3.0.1, the other codes benchmarked
are as follows (some for only one precision or machine):
Fig.[1 shows the benchmark results for power-of-two sizeatprec “four-step” FFT implementation [18] (from the C++
in double precision, on a 2.8 GHz Pentium IV with the InteARPREC library, 2002);cxm| the vendor-tuned Compaq
compilers; in Fig[R are results for selected non-power-ofxtended Math Library on Alphdftpack the Fortran library
two sizes of the form2¢3b5¢7¢ on the same machine; infrom [22]; green free code by J. Green (C, 1998kl the
Fig.[3 are the single-precision power-of-two results. Note thhttel Math Kernel Library v. 6.1 (DFTI interface) on the
only the FFTW, MKL (Intel), IPPS (Intel), and TakahashPentium IV;ipps the Intel Integrated Performance Primitives,
libraries on this machine were specifically designed to efignal Processing, v. 3.0 on the Pentiummymerical recipes
ploit the SSE/SSE2 SIMD instructions (see Secfioh 1X); fahe Cfourl routine from [31];00urg a free code by T. Ooura
comparison, we also include FFTW (out-of-place) with SIMIYC and Fortran, 2001}ingleton a Fortran FFT [32]sorensen
disabled (“fftw, no simd”). In Fig[ 4 are the power-of-twoa split-radix FFT [33]itakahashi the FFTE library v. 3.2 by
double-precision results on a 2 GHz PowerPC 970 (G5) with Takahashi (Fortran, 2004) [34]; andsp the Apple vDSP
the Apple gcc 3.3 compiler. In Fig[p are the power-of-library on the G5.
two double-precision results on an 833 MHz Alpha EV6 with We now offer some remarks to aid the interpretation of the
the Compaq compilers, and in F[g. 6 are the single-precisiperformance results. The performance of all routines drops for

4
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large problems, reflecting the cache hierarchy of the machitlee complex number at memory locatid+ & (with pointer
Performance is low for small problems as well, because of tagthmetic in units of complex numbers). By convention, we
overhead of calling a routine to do little work. FFTW is thelefine the zero-dimensional probletfy({} , {},I, O) to yield
only library that exploits SIMD instructions for non-power-the assignmen®© [0] := I [0].
of-two sizes, which gives it an advantage on the Pentium IV dft(N, {(n,¢,0)} U V,1,0) is recursively defined as a
for this case. IPPS is limited to in-place contiguous inputdpop” of n problems: for alld < k < n, yield all assignments
whereas MKL and FFTW allow for strided input. Assumingn dft(N, V,I+%-¢, 0 + k- o).
contiguous input gives some speed advantage on a machini two assignments write to the same memory location, the
such as the Pentium IV where index computation is somewHl3ET problem is undefined. Such nonsensical problems are not
slow. normally encountered in practice, however, as discussed in
Section1V-B.

IV. THE STRUCTURE OFFETW3 One property of this definition is the fact that an 1/O

tensor ¢ is equivalent tot U {(1,:,0)}. That is, length-1

In this section, we discuss in detail how FFTW work . : .
Specifically, we discuss how FETW represents the problzDFT dimensions and length-1 loops can be eliminated. FFTW

. therefore internally canonicalizes 1/0 tensors by removing all
S TV
fo be solved (Sectiorfs TVjA arfd T¥B), the set of plans thin dimensions where = 1. (Similarly, all I/O tensors of the

the planner considers during its search (Secfions]IV-J arjd ISO—rm £U{(0,1,0)} are equivalent.)

S : . )
[D). and the internal operation of the planner (Secfion Jv-E We call N the sizeof the problem. Theank of a problem

For simplicity, this section considers complex DFTs only; we ' R . ) .
discuss real DFTs in Sectién VI, IS defined to be the rank of its size (i.e., the dimensionality of

Of these components, the representation of the problemﬂgc‘:3 DFT). Similarly, we callV’ the vector sizeof the problem,

be solved is a critical choice. Indeed, we view our definitioaanI thevector rankof a problem is correspondingly defined to

of a “problem” as a fundamental contribution of this pa eBe the rank of its vector size. One unusual feature of FFTW
P Papeiy &hat the vector rank is arbitrary: FFTW is not restricted

Because only problems that can be expressed can be solyed, . o .
. . vector sizes of rank 1. Intuitively, the vector size can be
the representation of a problem determines an upper bound 10 . N .
nierpreted as a set of “loops” wrapped around a single DFT,
the space of plans that the planner can explore, and therefore . ; .
o . , and we therefore refer to a single I/O dimension f as
it ultimately constrains FFTW's performance. . .
a vector loop (Alternatively, one can view the problem as
defining a multi-dimensional DFT over a vector space.) The

A. Representation of problems in FFTW problem does not specify the order of execution of these loops,

DFT problems in FFTW are expressed in terms of structur8§wever, and therefore FFTW is free to choose the fastest or
called 1/0 tensors, which in turn are described in terms §0St convenient order.
ancillary structures called 1/0 dimensions. (I/O tensors areAn I/O tensor for whichy, = o, for all k£ is said to be
unrelated to the tensor-product notation of SPIRAL.) In thi§-place Occasionally, the need arises to replace input strides
section, we define these terms precise|y_ with output strides and vice versa. We de&nﬁ)y-l(t) to be

An 1/O dimensiond is a tripled = (n,:,0), wheren is a the /O tensor{(n,.,¢) | (n,¢,0) € t}. Similarly, we define
nonnegative integer called thength . is an integer called the copy-o(t) to be the I/O tensof(n, 0,0) | (n,:,0) € t}.
input stride ando is an integer called theutput stride An ~ The two pointersl and O specify the memory addresses
/O tensort = {dy,dy,...,d,} is a set of /O dimensions. The Of the input and output arrays, respectivelyl = O, we say
nonnegative integes = |¢| is called therank of the I/0 tensor. that the problem isn-place otherwise the problem isut-of-
A DFT problem denoted bydft(N, V, I, 0), consists of two place FFTW uses explicit pointers for three reasons. First, we
/0 tensorsN and V, and of twopointersI and O. Roughly can distinguish in-place from out-of-place problems, which is
speaking, this describg¥ | nested loops ofN|-dimensional important because many FFT algorithms are inherently either
DFTs with input data starting at memory locatiband output in-place or out-of-place, but not both. Second, SIMD instruc-
data starting aD. We now give a more precise definition bytions usually impose constraints on the memory alignment of
induction on ‘V|, yielding a set of assignments from inpuﬂ:he data arrays; from the pointer, FFTW determines whether
to output. Conceptually, all of the right-hand sides of theselMD instructions are applicable. Third, performance may
assignments are evaluated before writing their values to t#@pend on the actual memory address of the data, in addition to
left-hand sides, a fiction that defines the behavior preciselpe data layout, so an explicit pointer is in principle necessary
e.g., whenl = O. (See also the examples in Sectjon Iyv-B.) for maximum performance.

dft(N, {},I,0), with p = |N|, is the p-dimensional DFT,
defined_ as follows. LeN = {_(ng,bg,o@) | 1 <{<p}foral g pgT problem examples
output indiced) < ky < ny, yield the assignment

The 1/O tensor representation is sufficiently general to cover
) , many situations that arise in practice, including some that are
. ._ . Jek . . .
0 [Z ke 05] = Z I lZﬂ ”1 [Lwi not usually considered to be instances of the DFT. We consider
=1 e LE1 =1 a few examples here.
where each input inde) is summed fron® to n,—1, w,, is a An n; X ny two-dimensional matrix is typically stored in
primitive n-th root of unity as in Sectioﬁ]ll, anX [k] denotes C usingrow-major format: sizens contiguous arrays for each

5



Published inProc. IEEE vol. 93, no. 2, pp. 216-231 (2005).

row, stored asi; consecutive blocks starting from a pointemeans of some DFT algorithm such as Cooley-Tukey. These
I/O (for input/output). This memory layout is described byhree steps need not be executed in the stated order, however,
the in-place 1/0 tensoX = {(ni,n2,n2),(n2,1,1)}. Per- and in fact, almost every permutation and interleaving of these
forming then; x ny two-dimensional DFT of this array corre-three steps leads to a correct DFT plan. The choice of the set
sponds to the rank-2, vector-rank-0 probleift:(X,{},I,0). of plans explored by the planner is critical for the usability
The transform data can also be non-contiguous; for exaof-the FFTW system: the set must be large enough to contain
ple, one could transform am; x n} subset of the ma- the fastest possible plans, but it must be small enough to keep
trix, with n}, < no, starting at the upper-left corner, by:the planning time acceptable.

dft({(n1, na, n2), (nh, 1,1)},{},1,0). The remainder of this section enumerates the class of plans

Another possibility is the rank-1, vector-rank-1 problenconsidered by current FFTW planner. This particular set of
that performs a “loop” ofn; one-dimensional DFTs of sizeplans is reasonably simple, it can express a wide variety of
no, operating on all the contiguousows of the matrix: algorithms, and it seems to perform well on most architectures.
dft({(n2,1,1)}, {(n1,n2,n2)} ,I,0). Conversely, to perform We do not claim that this set is the absolute optimum: many
one-dimensional DFTs of the (discontiguowslumnsof the more possibilities exist that are a topic of future research,
matrix, one would useift({(n1,n2,n2)},{(n2,1,1)},1,0); and the space of plans will likely change in future FFTW
if no = 3, for example, this could be thought of as the sizgeleases. The plans that we now describe usually perform some
n, one-dimensional DFT of a three-component “vector fieldsimple “atomic” operation, and it may not be apparent how
(with “vector components” stored contiguously). these operations fit together to actually compute DFTSs, or why

Additionally, the rank-0, vector-rank-2  problemcertain operations are useful at all. We shall discuss these
dft({},X,1,0) denotes a copy (loop of rank-0 DFTs)matters in Sectiof IV-D. For now, we ask for the reader's
of niny complex numbers fron to O. (If I = O, the patience while we describe the precise set of plans generated
runtime cost of this copy is zero.) Morever, this is equivalefity FFTW.
to the problemift({},{(nins,1,1)},I,O)—it is possible to 1) No-op plans: The simplest plans are those that
combine vector loops that, together, denote a constant-offdét nothing. FFTW generates no-op plans for problems
sequence of memory locations, and FFTW thus canonicaliz&§(IN, V., I, O) in the following two cases:
all such vector loops internally. « when'V = {(0,:,0)}, that is, no data is to be trans-

Generally, rank-0 transforms may describe some in-place formed; or
permutation, such as a matrix transpositionIif= O. For ~ « whenN = {}, I = O, and the I/O tensoV is in-place.
example, to transpose thg xn, matrix tons xn,, both stored In this case, the transform reduces to a copy of the input
in row-major order starting af, one would use the rank-0, array into itself, which requires no work.
vector-rank-2 problemdft({}, {(n1,n2,1), (n2,1,n1)},I,I) Itis possible for the user to specify a no-op problem if one is
(these two vector loopsannot be combined into a single desired (FFTW solves it really quickly). More often, however,
loop). no-op problems are generated by FFTW itself as a by-product

Finally, one can imagine problems where the different DFT buffering plans. (See Sectign 1V-C.7.)
in the vector loop or a multi-dimensional transform operate 2) Rank-O plans: The rank-0 problemdft({},V.I,O)
on overlapping data. For example, the “two-dimensionaftenotes a permutation of the input array into the output array.
dft({(n1,1,1), (n2,1,1)},{} ,I,0) transforms a “matrix” FFTW does not solve arbitrary rank-O problems, only the
whose subsequent rows overlap i — 1 elements. The following two special cases that arise in practice.
behavior of FFTW is undefined in such cases, which are, ine When|V| =1 andI # O, FFTW produces a plan that
any case, prohibited by the ordinary user interface (Seffipn V- copies the input array into the output array. Depending
A). on the strides, the plan consists of a loop or, possibly,

of a call to the ANSI C functionmemcpy, which is
i specialized to copy contiguous regions of memory. (The
C. The space of plans in FFTW casel = O is discussed in Sectidn 1V-Q.1.)

The FFTW planner, when given a problem, explores a« When|V| =2, I = O, and the strides denote a matrix-
space of valid plans for that problem and selects the plan transposition problem, FFTW creates a plan that trans-
(a particular composition of algorithmic steps in a specified poses the array in-place. FFTW implements the square
order of execution) that happens to execute fastest. Many transpositiondft({}, {(n, o), (n,0,:)},I,O) by means
plans exist that solve a given problem, however. Which plans of the “cache-oblivious” algorithm from [35], which is
does FFTW consider, exactly? This section addresses this and fast and, in theory, uses the cache optimally regardless of
related questions. the cache size. A generalization of this idea is employed

Roughly speaking, to solve a general DFT problem, one for non-square transpositions with a large common factor
must perform three tasks. First, one must reduce a problem of or a small difference between the dimensions [36], and
arbitrary vector rank to a set of loops nested around a problem otherwise the algorithm from [37] is used.
of vector rank O, i.e., a single (possibly multi-dimensional) An important rank-O problem that is describable but not
DFT. Second, one must reduce the multi-dimensional DFT ¢aoirrently solvable in-place by FFTW is the general in-place
a sequence of of rank-1 problems, i.e., one-dimensional DF8git-reversal permutation [20], which could be used for some
Third, one must solve the rank-1, vector rank-0 problem WFT algorithms.
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3) Rank-1 plans:Rank-1 DFT problems denote ordinanbe destroyed. DIF plans that do not destroy the input could
one-dimensional Fourier transforms. FFTW deals with mobe devised, but we did not implement them because our main
rank-1 problems as follows. (Other kinds of rank-1 plans exisise of DIF plans is for in-place transforms (Secfion TViD.3).
which apply in certain special cases such as DFTs of prime4) Plans for higher ranks:These plans reduce a multi-
size. See Sectidn IV-Q.7.) dimensional DFT problem to problems of lower rank, which

a) Direct plans: When the DFT rank-1 problem are then solved recursively.
is “small enough,” FFTW produces direct plan that Formally, to solvedft(N,V,I,0), where N = N; U
solves the problem directly. This situation occurs for proiN., |N;| > 1 and |[Ny| > 1, FFTW generates a plan
lems dft({(n,¢,0)},V,I,0) where |[V| < 1 andn € that first solvesdft(N;,V U Nj,I,0), and then solves
{2,...,16,32,64}. These plans operate by calling a fragmenift(copy-o(N3), copy-o(V UNj;), O, O).
of C code (acodele} specialized to solve problems of one In principle, FFTW generates a plan for every suitable
particular size. In FFTW, codelets are generated automaticadlyoice of the subse®l; and Ny, but in practice we impose
by genfft , but it is possible for a user to add hand-writterertain restrictions on the possible choices in order to reduce
machine-specific codelets if desired. the planning time. (See Sectipn ¥-B.) A typical heuristic is to

We impose the restriction thaV| < 1 because of engi- choose two sub-problen¥; and N, of roughly equal rank,
neering tradeoffs. Informally speaking, a codelet fféff = 0 where each input stride IN; is smaller than any input stride
consists of straight-line code, while a codelet f8f| = 1 in Ns.
consists of a vector loop wrapped around straight-line code.5) Plans for higher vector ranksThese plans extract a
Either codelets implement the loop or they don’t—allowing fovector loop to reduce a DFT problem to a problem of lower
both possibilities would require the duplication of the wholgector rank, which is then solved recursively.
set of codelets. In practicéV| = 1 is more common than  Formally, to solvelft(N, V,I, O), whereV = {(n, ¢, 0)}U
V| = 0, and therefore FFTW takes the position that alV;, FFTW generates a loop that, for alsuch that) < k < n,
direct problems have vector rank 1, converting the rank-0 li@vokes a plan fodft(N, V;, I+ k-, O+ k- 0).
tensor{} into the rank-1 I/O tensof(1,0,0)}. We have not  Any of the vector loops ofV could be extracted in this
investigated the performance implications of codelets of highamry, leading to a number of possible plans. To reduce the loop
vector rank. For now, FFTW handles the general vector-rapkrmutations that the planner must consider, however, FFTW
case via Sectioh TV-C|5. only considers the vector loop that has either the smallest or

b) Cooley-Tukey plans:For problems of the form the largest; this often corresponds to the smallest or largest
dft({(n,t,0)},V,I,0) wheren = rm, FFTW generates as well, or commonly vice versa (which makes the best loop
a plan that implements a radix-Cooley-Tukey algorithm order nonobvious).

(Section[1)). (FFTW generates a plan for each suitable value6) Indirect plans: Indirect plans transform a DFT problem
of r, possibly in addition to a direct plan. The planner thethat requires some data shuffling (or discontiguous operation)
selects the fastest.) into a problem that requires no shuffling plus a rank-0 problem

Of the many known variants of the Cooley-Tukey algorithnthat performs the shuffling.

FFTW implements the following two, distinguished mainly Formally, to solvedft(N, V,I,O) where|N| > 0, FFTW
by whether the codelets multiply their inputs or outputs bgenerates a plan that first solvd&({} ,N U V,I,0O), and
twiddle factors. (Again, if both apply, FFTW tries both.) As foithen solvesift(copy-o(N), copy-o(V), O, O). This plan first
direct plans, we restrigiV| to be < 1 because of engineeringrearranges the data, then solves the problem in place. If the
tradeoffs. (In the following, we use; andn, from Eq. [2).) problem is in-place or the user has indicated that the input can

A decimation in time(DIT) plan uses aadix r = ny be destroyed, FFTW also generates a dual plan: first solve
(and thusm = ny): it first solvesdft({(m,r-¢,0)},V U dft(copy-i(N), copy-i(V),I,I), and then solvelft({} ,N U
{(r,t,m-0)},1I,0), then multiplies the output arra® by the V,I,O) (solve in place, then rearrange).
twiddle factors, and finally solvesft({(r,m - o,m -0)},VU 7) Other plans:For completeness, we now briefly mention
{(m,0,0)},0,0). For performance, the last two steps arthe other kinds of plans that are implemented in FFTW.
not planned independently, but are fused together in a singleéBuffering planssolve a problem out-of-place to a temporary
“twiddle” codelet—a fragment of C code that multiplies itsuffer and then copy the result to the output array. These plans
input by the twiddle factors and performs a DFT of size serve two purposes. First, it may be inconvenient or impossible
operating in-place 0®. FFTW contains one such codelet foto solve a DFT problem without using extra memory space,

eachr € {2,...,16,32,64}. and these plans provide the necessary support for these cases
A decimation in frequencyDIF) plan usesr = n; (and (e.g. in-place transforms). Second, if the input/output arrays
thus m = ny); it operates backwards with respect to are noncontiguous in memory, operating on a contiguous

DIT plan. The plan first solveslft({(r,m-¢,m-¢)},V U buffer might be faster because of better interaction with caches
{(m,t,¢)},1,I), then multiplies the input arraf by the and the rest of the memory subsystem. Similaslyfered DIT
twiddle factors, and finally solveslft({(m,¢,r-0)},V U (or DIF) plans apply the twiddle codelets of Sectjon TV-C|3.b
{(r,m-1,0)},I,0). Again, for performance, the first twoby copying a batch of inputs to a contiguous buffer, executing
steps are fused together in a single codelet. Because DIF pldres codelets, and copying back.

destroy the input array, however, FFTW generates them onlyGeneric plandmplement a naived(n?) algorithm to solve

if I = 0O or if the user explicitly indicates that the input carone-dimensional DFTs. Similarlf)Rader planamplement the
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size-30 DFT, depth-first: is illustrated by an example in Fi§] 7 and discussed further
loop 3 below.
size-5 direct codelet, vector size 2 Depth-first traversal has theoretical advantages for cache
{ size-2 twiddle codelet, vector size 5 utilization: eventually, the sub-DFT will fit into cache and
size-3 twiddle codelet, vector size 10 (ideally) require no further cache misses [2], [3], [19], [35],
regardless of the size of the cache. (Although we were initially
size-30 DFT, breadth-first: motivated, in part, by these results, the point of FFTW's
loop 3 self-optimization is that we need not rely on this or any
size-5 direct codelet, vector size 2 similar prediction.) Technically, the asymptotically optimal
loop 3 “cache-oblivious” recursive algorithm would use a radix of
size-2 twiddle codelet, vector size 5 ©(y/n) for a transform of size:, analogous to the “four-step”
size-3 twiddle codelet, vector size 10 algorithm [18], [38], but we have found that a bounded radix

generally works better in practice, except for at most a single

Fig. 7. Two possible decompositions for a size-30 DFT, both for the arbitraBtep Of radixx/ﬁ.

choice of DIT radices 3 then 2 then 5, and prime-size codelets. Items grouped depth-first style is also used for the multi-dimensional
by a “{” result from the plan for a single sub-problem. In the depth-first cas

the vector rank was reduced to 0 as per Sedfion 1Y-C.5 before decomposm&ns of Sectiorj TV-Cl4, Where. in this case the planner_ can
sub-problems, and vice-versa in the breadth-first case. (and often does) choose the optimal cache-oblivious algorithm:

it breaks the transform into sub-problems of roughly equal

rank. In contrast, an iterative, “breadth-first” approach might
algorithm from [28] to compute one-dimensional DFTs operform all of the 1d transforms for the first dimension, then
prime size inO(nlogn) time (with Rader-DIT plansfor the all of the 1d transforms for the second dimension, and so
twiddled DFTs of large prime factors). (A future release afn, which has extremely poor cache performance compared
FFTW also implements Bluestein’s “chirp-z” algorithm [27]to grouping the dimensions into smaller multi-dimensional
[29]) transforms.

Real/imaginary planssxecute a vector loop of two spe- Because its sub-problems contain a vector loop that can
cialized real-input DFT plans (Sectign VII) on the real antle executed in a variety of orders, however, FFTW3 can
imaginary parts of the input, and then combine the results. Thilso express breadth-first traversal. For example, if the rule
can be more efficient if, for example, the real and imaginaof Section TV-C.4 were applied repeatedly to first reduce the
parts are stored by the user in separate arrays (a generalizatink to1, andthenthe vector ranks were reduced by applying
of the storage format that we omitted above). the loop rule of Sectiop TV-C|5 to the sub-problems, the plan

Parallel (multi-threaded) plans are achieved by a speciabuld implement the breadth-first multi-dimensional approach
variant of Sectior]f IV-C} that executes the vector loop idescribed above. Similarly, a 1d algorithm resembling the
parallel, along with a couple of extra plans to execute twiddl¢raditional breadth-first Cooley-Tukey would result from ap-
codelet loops in parallel. Although shared- and distributegdying Section IV-C.3.p to completely factorize the problem
memory parallel versions of FFTW exist, we do not furthesize before applying the loop rule to reduce the vector ranks.
describe them in this paper. As described in Sectidn ViB, however, by default we limit the
types of breadth-first-style plans considered in order to reduce
planner time, since they appear to be suboptimal in practice
as well as in theory.

Although it may not be immediately apparent, the combi- Even with the breadth-first execution style described above,
nation of the recursive rules in Sectipn TV-C can produce though, there is still an important difference between FFTW
number of useful algorithms. To illustrate these compositionsnd traditional iterative FFTs: FFTW has no separate bit-
we discuss in particular three issues: depth- vs. breadth-firelversal stage. For out-of-place transforms, the re-ordering
loop reordering, and in-place transforms. More possibilitieccurs implicitly in the strides of Sectign TV-C.3.b (which
and explicit examples of plans that are “discovered” in practiege transferred to the strides of the nested vector loops in
are discussed in Sectign V-C. a recursive breadth-first plan); in any case, the “leaves” of

1) Depth-first and breadth-first FFTsif one views an the recursion (direct plans) transform the input directly to
FFT algorithm as a directed acyclic graph (dag) of dafts correct location in the output, while the twiddle codelets
dependencies (e.g. the typical “butterfly” diagram), most traperate in-place. This is an automatic benefit of a recursive
ditional Cooley-Tukey FFT implementations traverse the trémplementation. (Another possibility would be a Stockham-
in “breadth-first” fashion (Sectidn]ll). In contrast, FFTW1 andtyle transform, from Sectiofi]ll, but this is not currently
FFTW?2 traversed the dag in “depth-first” order, due to theimplemented in FFTW.)
explicitly recursive implementation. That is, they completely 2) Vector recursion:Another example of the effect of loop
solved a single one-dimensional sub-DFT before moving onteordering is a style of plan that we sometimes calttor
the next. FFTW3 also evaluates its plans in an explicitly recuecursion (unrelated to “vector-radix” FFTs [16]). The basic
sive fashion, but, because its problems now include arbitradea is that, if you have a loop (vector-rahk of transforms,
vector ranks, it is able to express both depth- and breadthhere the vector stride is smaller than the transform size,
first traversal of the dag (as well as intermediate styles). Thisis advantageous to push the loop towards the leaves of

D. Discussion
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the transform decomposition, while otherwise maintainingan be employed. We emphasize that all of these algorithms
recursive depth-first ordering, rather than looping “outsideire “discovered” automatically by the planner simply by
the transform; i.e., apply the usual FFT to “vectors” ratheromposing the rules of Sectipn TV}-C.
than numbers. Limited forms of this idea have appeared for
computing multiple FFTs on vector processors (where the lo
in question maps directly to a hardware vector) [22], and %\0 The FFTW planner
another restricted form as an undocumented feature of FFTW2In this section, we discuss the implementation and operation
Such plans are among the many possible compositions abfthe FFTW planner.
our recursive rules: one or more steps of the Cooley-TukeyThe FFTW planner is a modular piece of code independent
decomposition (Sectign IV-C.3.b) can execute before the lo@f the specific problems and plans supported by the system. In
stride vector loop is extracted (Sectjon IV-{.5), but with othéhis way, we can reuse the same planner for complex DFTs,
loops still extracted before decomposition. The low-stridk¢al-data DFTs, and other transforms. The separation between
vector loop need not, however, be pushed all the way to thg@nner and plans is achieved by means of ancillary entities
leaves of the decomposition, and it is not unusual for the logglled solvers which can be viewed as the portion of the
to be executed at some intermediate level instead. planner that is problem- and plan-specific. The choreography
For example, low-stride vector loops appear in the decorf the planner, solvers, and plans is arranged as follows.
position of a typical multi-dimensional transform (Sectjon]IV- The planner is first initialized with a list of solvers. Given a
[C4): along some dimensions, the transforms are contigugueblem, the planner calls each solver in sequence, requesting
(stride 1) but the vector loop is not, while along other dimena plan for the problem. Each solver returns either a pointer
sions the vector stride is but the transforms are discontigu-to a plan or a null pointer, which indicates that the solver
ous, and in this latter case vector recursion is often preferr@@nnot create a plan for that problem. The planner selects the
As another example, Cooley-Tukey itself produces a urfastest plan (by performing explicit time measurements) and
input-stride vector loop at the top-level DIT decompositionieturns it to the user. The user calls the plan to compute Fourier
but with a largeoutputstride; this difference in strides makegransforms as desired.
it nonobvious whether vector recursion is advantageous forA solver can generate a certain class of plans. (Approxi-
the sub-problem, but for large transforms we often obserugately, one solver exists for each item in the classification
the planner to choose this possibility. of plans from Sectiofi IV-C.) When invoked by the planner, a
3) In-place plans:In-place 1d transforms can be obtainegolver creates the plan for the given problem (if possible) and
by two routes from the possibilities described in Secfiion V-Gt initializes any auxiliary data required by the plan (such as
via combination of DIT and DIF plans (Sectipn IV-C.B.b) withtwiddle factors). In many cases, creating a plan requires that a
transposes (Secti¢n 1V-G.2), or via buffering (Secfion TV}C.7jlan for one or more sub-problems be available. For example,
The transpose-based strategy for an in-place transform@goley-Tukey plans require a plan for a smaller DFT. In these
sizepgm is outlined as follows. First, the transform is decomeases, the solver obtains the sub-plans by invoking the planner
posed via a radix- DIT plan into a vector ofp transforms recursively.
of size gm, then these are decomposed in turn by a radix- By construction, the FFTW planner usggnamic program-
DIF plan into a vector (rank) of p x ¢ transforms of sizen. ming[12, chapter 16]: it optimizes each sub-problem locally,
These transforms of siz& have input and output at differentindependently of the larger context. Dynamic programming
places/strides in the original array, and so cannot be solvisdnot guaranteed to find the fastest plan, because the perfor-
independently. Instead, an indirect plan (Secfion TV}C.6) mance of plans is context-dependent on real machines: this
used to express the sub-problemggsin-place transforms of is another engineering tradeoff that we make for the sake of
sizem, followed or preceded by aim x p x ¢ rank-0 transform. planning speed. The representation of problems discussed in
The latter sub-problem is easily seen tosein-placep x ¢  Sectior[ IV-A is well suited to dynamic programming, because
transposes (ideally square, i;2= ¢). Related strategies for a problem encodes all the information required to solve it—no
in-place transforms based on small transposes were descritefdrence to a larger context is necessary.
in [23]-[26]; alternating DIT/DIF, without concern for in-place Like most dynamic-programming algorithms, the planner
operation, was also considered in [39], [40]. potentially evaluates the same sub-problem multiple times. To
As an optimization, we includBIF-transpose codeletthat avoid this duplication of work, the FFTW planner uses the
combine the radix: DIF twiddle codelet (in a loop of length)  standard solution aiemoizationit keeps a table of plans for
with the p x ¢ transpose, fop = ¢ € {2,3,4,5,6,8}. (DIF- already computed problems and it returns the solution from
transpose is to DIF + transpose roughly as [24] is to [25]the table whenever possible. Memoization is accomplished
Another common special case is where= 1, in which a by FFTW in a slightly unorthodox fashion, however. The
sizeq direct plan (Sectionq TV-C.3la), not a DIF codelet, isnemoization table, which maps problems into plans, contains
required (the twiddle factors are unity), and the transposes asgther problems nor plans, because these data structures can
performed at the leaves of the plan. be large and we wish to conserve memory. Instead, the planner
Since the sizern transforms must be performed in-placestores a 128-bit hash of the problem and a pointer to the solver
if they are too large for a direct plan the transpose schertat generated the plan in the first place. When the hash of a
can be used recursivelyr a buffered plan can be used fomproblem matches a hash key in the table, the planner invokes
this sub-problem. That is, a mixture of these two strategiéise corresponding solver to obtain a plan. For hashing, we
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fftw_plan plan; 4000
fftw_complex in[n], out[n];

o—e fftw, patient mode
a--a fftw, impatient mode
oo fftw, estimate mode

3500

[}

* plan a 1d forward DFT: */ 3000
plan = fftw_plan_dft_1d(n, in, out, s

FFTW_FORWARD, FFTW_PATIENT); @ 2500
[=]

Initialize in[]  with some data. .. £ 2000

fftw_execute(plan); // compute DFT ?,1500

Write some new data tim[] 1000

fftw_execute(plan); // reuse plan 500 a

Fig. 8. Example of FFTW's use. The user must first create a plan, which Tg-t-e
can be then used for many transforms of the same size. 0o r 0 & w PERUENAERERA LN
PN TREBERSEs e dNARBR

use the cryptographically strong MDS algorithm [41]. In th%ig. 9. Effect of planner tradeoffs: comparison of patient, impatient, and
extremely unlikely event of a hash collision, the planner woulketimate modes in FFTW for double-precision 1d complex DFTs, power-of-
still return a valid plan, because the solver returned by the tal@ sizes, on a 2GHz PowerPC 970 (G5). Compiler and flags as iff Fig. 4.
lookup would either construct a valid plan or fail, and in the
latter case the planner would continue the search as usual. ) )
B. Planning-time tradeoffs
Depending upon the application, it is not always worthwhile
to wait for the planner to produce an optimal plan, even
inder the dynamic-programming approximation discussed in
ection[ IV-E, so FFTW provides several other possibilities.
ne option is to load from a file the memoization hash table
of Section[IV-g), so that the planner need not recompute it.
For problems that have not been planned in advance, various
time-saving approximations can be made in the planner itself.
A. User interface In patient mode(used _for the bench_ma_rks in Section| III_),
the planner tries essentially all combinations of the possible
The internal complexity of FFTW is not exposed to the usesjans, with dynamic programming.
who only needs to specify her problem for the planner and Ajternatively, the planner can operate in iampatient mode
then, once a plan is generated, use it to compute any nUMfigjt reduces the space of plans by eliminating some pos-
of transforms of that size. (See F[g. 8.) sibilities that appear to inordinately increase planner time
Although the user can optionally specify a problem byelative to their observed benefits. Most significantly, only
its full representation as defined in Sectfon IV, this level adne way to decompose multi-dimensiomdlor V (Sections
generality is often only necessary internally to FFTW. Instegfi/-C.4] and[IV-C.5) is considered, and vector recursion is
we provide a set of interfaces that are totally ordered hjisabled (Sectiof IV-D]2). Furthermore, the planner makes
increasing generality, from a single (vector-rabk1d unit- an approximation: the time to execute a vector loop/of
stride complex transform (as in Figl 8), to multi-dimensionatansforms is taken to bé multiplied by the time for one
transforms, to vector-rank transforms, all the way up to thetransform. Altogether, impatient mode often requires a factor
general case. (An alternate proposal has been to modify @ni0 less time to produce a plan than the full planner.
FFT/data “descriptor” with a set of subroutines, one per degreefFinally, there is anestimate modehat performs no mea-
of freedom, before planning [42].) surements whatsoever, but instead minimizes a heuristic cost
With the more advanced interfaces, which allow the user fanction: the number of floating-point operations plus the
specify vector loops and even I/O tensors, it is possible for thember of “extraneous” loads/stores (such as for copying to
user to define nonsensical problems with DFTs of overlappibaffers). This can reduce the planner time by several orders
outputs (Sectiofi IV-B). The behavior of FFTW is undefinedf magnitude, but with a significant penalty observed in plan
in such a case; this is rarely a problem, in practice, becausfticiency (see below). This penalty reinforces a conclusion
only more sophisticated users exploit these interfaces, and so€h[3]: there is no longer any clear connection between
users are naturally capable of describing sensible transforopgeration counts and FFT speed, thanks to the complexity
to perform. of modern computers. (Because this connection was stronger
As one additional feature, the user may control tradeoffis the past, however, past work has often used the count of
in planning speed versus plan optimality by a flag argumeatithmetic operations as a metric for compari@gn logn)
(e.g.FFTWPATIENT in Fig.[). These tradeoffs are discusse8FT algorithms, and great effort has been expended to prove
below. and achieve arithmetic lower bounds [16].)

V. FFTW3IN PRACTICE

In this section, we discuss some of our practical expe
ences with FFTW, from user-interface design, to plannin
time/optimality tradeoffs, to interesting planner choices th
are experimentally observed.
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4000 —e G5

oo G, plan from Pentium IV inpyt and coptiguous output; instead, an indirect plan is used
3500 - g;gmmplmmm% to first copy input to output, and then the codelet is executed

in-place on contiguous values. The same size on the G5 yields
the plan: radix4 DIT; followed by an indirect plan to copy
and work with a contiguous sizi6384 in-place sub-plan on
the output. The sub-plan is: radd2 DIT; vector-recursion of

the size32 loop through radixt6 DIT; followed by another
indirect plan to performi6 transposes of siz&2 x 32, and then

512 size32 direct codelets. The sub-plan’s usage of indirect
plans fulfills their original purpose of in-place transforms
(Section[TV-D.3); indirect plans for large out-of-place DFTs
were initially a surprise (and often boosted speed by 20% or

speed (mflops)

more).
P roew PERUENSERER2ERY Another surprise was that, whenever possible, the transposes
O PSRRI B3d3NABRR ; ;
SeSNEgESER for in-place DFTs are almost always used at the leaves with a
N

direct codelet, as for the siZ&384 sub-plan of the G5 plan

Fig. 10. Effects of tuning FFTW on one machine and running it on anothé0OVe; our preconception was that the transpose would be

The graph shows the performance of one-dimensional DFTs on two machingeouped at an intermediate point with an explicit DIF step

a 2 GHz PowerPC 970 (G5), and a 2.8 GHz Pentium IV. For each machine, ~
we report both the speed of FFTW tuned to that machine and the speed tu@w%ﬁ for the DIF transpose COdeIetS)' As another example’ an

to the other machine. INn-place size65536 plan on the Pentium IV uses: radixbIT,
radix-4 DIF-transpose, two radixé DIT steps, and finally an
indirect plan that first performs6 x 16 transposes and then
The relative performance of the 1d complex-data planges a sizd6 direct codelet.
created in patient, impatient, and estimate modes are showiRegarding vector recursion, we had first guessed that a low-
in Fig.[d for the PowerPC G5 from Sectipn]lll. In this casestride vector loop would always be pushed all the way to the
estimate mode imposes median and maximum speed penalééses of the recursion, and an early implementation enforced
of 20% and 72%, respectively, while impatient mode imposesitis constraint. It turns out that this is often not the case,
maximum penalty of 11%. In other cases, however, the penaliywever, and the loop is only pushed one or two levels down,
from impatient mode can be larger; for example, it has a 4746 in the G5 plan above. Indirect plans add another level of
penalty for al024 x 1024 2d complex-data transform on thecomplexity, because often the copy (rabksub-plan executes
same machine, since vector recursion proves important th@ggeloops in a different order than the transform sub-plan. This
for the discontiguous (row) dimension of the transform.  happens, for example, when the (discontiguous) columns of a
It is critical to create a new plan for each architecture—=4024 x 1024 array are transformed in-place on the G5, whose
there is a substantial performance penalty if plans from onesulting plan uses contiguous buffer storiigolumns at a
machine are re-used on another machine. To illustrate thiige, a radixi6 DIT step, an indirect plan that first copies
point, Fig.[I0 displays the effects of using the optimal plaw the buffer than transforms in-place with a sizedirect
from one machine on another machine. In particular, it plot®delet, and then copies back. Because the vector loop over
the speed of FFTW for one-dimensional complex transfornise columns is stridé; it is best to push that loop to the leaves
on the G5 and the Pentium IV. In addition to the optimaif the copy operations; on the other hand, the direct codelet
plan chosen by the planner on the same machine, we plot #jrates on contiguous buffers so it prefers to have thelsize-
speed on the G5 using the optimal plan from the Pentium Néctor loop innermost. (A similar effect, with different radices,
and vice versa. In both cases, using the wrong machine’s pgturs in the Pentium IV plan for this problem.)
imposes a speed penalty of 20% or more for at l@a8t of While “explanations” can usually be fabricated in hindsight,
the cases benchmarked, up to a 40% or 34% penalty for e do not really understand the planner’s choices because we
G5 or Pentium 1V, respectively. cannot predict what plans will be produced. Indeed, this is the
whole point of implementing a planner.

C. Planner choices

It is interesting to consider examples of the sometimes Vl. THE GENFFTCODELET GENERATOR

unexpected plans that are actually chosen in practice by th&'he base cases of FFTW's recursive plans are its “codelets,”
planner. and these form a critical component of FFTW'’s performance.
For example, consider an out-of-place DFT of 952636 = They consist of long blocks of highly optimized, straight-
216_On our Pentium 1V, the plan has the overall structure: DIline code, implementing many special cases of the DFT that
of radices32 then8 then 16, followed by a direct codelet of give the planner a large space of plans in which to optimize.
size16. However, the first step actually uses buffered DIT, andot only was it impractical to write numerous codelets by
its size32 vector loop is pushed down to the direct codeldiand, but we also needed to rewrite them many times in order
“leaves” by vector recursion (Sectipn TV-1).2). Moreover, théo explore different algorithms and optimizations. Thus, we
sized6 direct codelet would normally have discontiguouslesigned a special-purpose “FFT compiler” caligehfft

11



Published inProc. IEEE vol. 93, no. 2, pp. 216-231 (2005).

that produces the codelets automatically from an abstract deere, the registers are viewed as a form of cache). As a prac-
scription.genfft  is summarized in this section and describetical matter, one consequence of this scheduler is that FFTW’s
in more detail by [2]. machine-independent codelets are no slower than machine-
As discussed in Sectiof ]V, FFTW uses many kindspecific codelets generated by SPIRAL [43, Figure 3].
of codelets: “direct” codelets (Sectign _IV-C.B.a), “twiddle” In the stockgenfft implementation, the schedule is finally
codelets in the DIT and DIF variants (Section 1V-C|3.b), andnparsed to C. A variation from [44] implements the rest of
the more exotic “DIF-transpose codelets” (Sectjon 1V]D.3a compiler backend and outputs assembly code.
(Additional kinds of codelets will be presented in Sections
@]anq [V__HT]) . — VIl. REAL-DATA TRANSFORMS
In principle, all codelets implement some combination of the
Cooley-Tukey algorithm from Eq[ [2) and/or some other DFT In this section, we briefly outline how FFTW computes
algorithm expressed by a similarly compact formula. HoweveDFTs of real data (aeal DFT), and we give a newd(n logn)-
a high performance implementation of the DFT must addretismie algorithm to compute the one-dimensional DFT of real
many more concerns than Ef] (2) alone suggests. For exampleays of prime length.
Eq. (3) contains multiplications by that are more efficientto  As is well known, the DFTY of a real array of lengtm
omit. Eq. [2) entails a run-time factorization of which can has theHermitian symmetry
be precomputed if. is known in advance. Ed.|(2) operates on
complex numbers, but breaking the complex-number abstrac- Yin—k]l=Y"[k] 3)

tion into real and imaginary components turns out to expo

S . .
certain non-obvious optimizations. Additionally, to exploit thé(v%ere Y*[k] denotes the complex conjugate 8f[k]. (A

long pipelines in current processors, the recursion impli {mllar symmetry holds for multi-dimensional arrays as well.)

in Eq. (2) should be unrolled and re-ordered to a significa 4 exploiting this symmetry, one can save roughly a factor of
go in storage and, by eliminating redundant operations within

degree. Many further optimizations are possible if the complé o
input is known in advance to be purely real (or imaginaryi. € FFT’ roughly a_factor of two in time as well [45].
The implementation of real-data DFTs in FFTW parallels

Our design goal fogenfft  was to keep the expression of the _ . } )
DFT algorithm independent of such concerns. This separati t of complex DFTs discussed in Sectjorj IV. For direct

allowed us to experiment with various DFT algorithms anBianS: We use optimized codelets generateddnyft , which
implementation strategies independently and without (mucﬂztomatlcally derives specialized real-data algorithms from the
tedious rewriting corresponding complex algorithm (Sectipn| VI). For Cooley-

genfft is structured as a compiler whose input consistekey Plans, we use a mixed-radix generalization of [45],
of the kind and size of the desired codelet, and who ich works by eliminating the redundant computations in

output is C codegenfft  operates in four phases: creation@ Standard Cooley-Tukey algorithm applied to real data [22],
simplification, scheduling, and unparsing. [46], [47]. . .

In the creationphasegenfft  produces a representation of When the transform length is a prime number, FFTW
the codelet in the form of a directed acyclic graph (dag). THSES an adap_tatlon of_ Rader’s algorithm [28] that reduces _the
dag is produced according to well-known DFT algorithmétorage and time requirements roughly by_afactor of_two Wlfch
Cooley-Tukey (Eq.[[2)), prime-factor [27, page 619], Sp|it[espept to the com_plex case. The remainder of this section
radix [16], and Rader [28]. Each algorithm is expressed scribes this algorithm, which to our knowledge has not been

a straightforward math-like notation, using complex numbergyb"Shed bgfore. . .
with no attempt at optimization. The algorithm first reduces the real DFT to the discrete

In the simplificationphasegenfft  applies local rewriting Hartley transform (DHT) by means of the well-known reduc-
rules to each node of the dag in order to simplify it. Thion of [48], and then it executes a DHT variant of Rader's
phase performs algebraic transformations (such as eliminatflgerithm. The DHT was originally proposed by [48] as a
multiplications byl), common-subexpression elimination, anf@Ster alternative to the real DFT, but [45] argued that a
a few DFT-specific transformations. These simplifications a¥¢e!l-implemented real DFT is always more efficient than an
sufficiently powerful to derive DFT algorithms specialized fop!90rithm that reduces the DFT to the DHT. For prime sizes,
real and/or symmetric data automatically from the compld}oWever, no real-data variant of Rader's algorithm appears to
algorithms. We take advantage of this property to implemeRg known, and for this case we propose that a DHT is useful.
real-data DFTs (Sectiofi VII), to exploit machine-specific To compute DHTs of prime size, recall the definition of
“SIMD” instructions (Sectior{ TX), and to generate codelet?HT:
for the discrete cosine (DCT) and sine (DST) transforms . . (27K
(Sectior[ VTI). YK = ZOXU] cas ( n ) ’ @

In the schedulingphase,genfft  produces a topological =
sort of the dag (a “schedule”). The goal of this phase is to fimhere cas(x) = cos(x) + sin(z). If n is prime, then there
a schedule such that a C compiler can subsequently perfagrists a generatay of the multiplicative group modula: for
a good register allocation. The scheduling algorithm used Bil j € {1,2,...,n — 1}, there exists a unique integer €
genfft  offers certain theoretical guarantees because it has{ts 1,...,n — 2} such that thatj = ¢ (mod n). Similarly,
foundations in the theory of cache-oblivious algorithms [35jne can writek = g7 (mod n) if k # 0. For nonzerdk, we

n—1
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can thus rewrite Eq[[4) as follows. This definition can be rewritten in this way:
n—1
n—2 e
2 —(q—p) _ 1,2mi (2541)(2k+1)/(8n)
Ylg™) = X[0] + 3 X[g"]cas (”g ) O VIH = 2, Xl
n Jj=0
p=0 n—1
+ X[j]e—%ri (2j+1)(2k+1)/(8n) )

where the summation is a cyclic convolution of a permutation

of the input array with a fixed real sequence. This cyclic =

convolution can be computed by means of two real DFTK) other words, the outputs of a DCT-IV of lengthare just

in which case the algorithm take®(nlogn) time, or by a subset of the outputs of a DFT of length whose inputs

any other method [49]. (FFTW computes convolutions viaave been made suitably symmetric and interleaved with zeros.

DFTs.) The output element’[0], which is the sum of all Similar reductions apply to all other kinds of trigonometric

input elements, cannot be computed via Eq. (5) and must tib@nsforms.

calculated separately. Consequently, to generate code for a trigonometric trans-
An adaptation of Bluestein's prime-size algorithm to théorm, genfft  first reduces it to a DFT and then it gen-

DHT also exists [50], but the known method does not exhibirates a dag for the DFT, imposing the necessary symme-

asymptotic savings over the complex-data algorithm. tries, setting the appropriate inputs @ and pruning the
dag to the appropriate subset of the outputs. The symbolic

simplications performed byenfft are powerful enough
VIIl. TRIGONOMETRIC TRANSFORMS to eliminate all redundant computations, thus producing a
specialized DCT/DST algorithm. This strategy requires no
Along with the DHT, there exist a number of other usefuprior knowledge of trigonometric-transform algorithms and is
transforms of real inputs to real outputs: namely, DFTs of reaixceptionally easy to implement.
symmetric (or anti-symmetric) data, otherwise known as theHistorically, the generator of FFTW2 (1999) implemented
discrete cosine and sine transforms (DCTs and DSTSs), tyggerimental, undocumented support for the DCT/DST | and
I-VIIl [27], [51]-[53]. We collectively refer to these trans-Il in this way. Vuduc and Demmel independently rediscovered
forms astrigonometric transformsTypes -1V are equivalent that genfft  could derive trigonometric transforms from
to (~ double-length) DFTs of even size with the differenthe complex DFT while implementing ideas similar to those
possible half-sample shifts in the input and/or output. Typeéescribed in this section [54].
V=VIII [52] are similar, except that their “logical” DFTs are
of odd size; these four types seem to see little practical use, g0 General trigonometric transforms
we do not implement them. (In order to make the transforms
unitary, additional factors of/2 multiplying some terms are
required, beyond an overall normalizaton bf,/n. Some

[}

Type Il and Il trigonometric transforms of length are
computed using a trick from [22], [55] to re-express them
! . ! . in terms of a size: real-input DFT. Types | and IV are more
3\/?:;‘?{; 'B(I::l_llj_d)e these factors, breaking the direct equwalenoﬁﬁicult, because we have observed that convenient algorithms
' . . .to embed them in an equal-length real-input DFT have poor
Each type of symmetric DFT has two kinds of plans iRy, merical properties: the type-I algorithm from [22], [31] and
FFTW: direct plans (using specialized codelets generatedllp% type-IV algorithm from [56] both havé, (root mean
genfft ), and general-length plans that re-express a ranks are) relative errors that seem to grow(ss/n). We have
1 transform of Ie_ngthn in terms of a real-input DFT plus performed a detailed error analysis, but we believe the
pre/post-processing. (Here, denotes the number of non-y ,piem is due to the fact that both of these methods multiply
redundant real inputs.) the data by a bare cosine (as opposed to a unit-magnitude
In the rest of this section, we show hogenfft — gen- yiddle factor), with a resulting loss of relative precision near
erate; the codelets required by trigonometric direct plagse cosine zero. Instead, to compute a type-IV trigonometric
(Section[VIM-A), and we discuss how FFTW implementgansform, we use one of two algorithms: for evenwe use
trigonometric transforms in the general case (Se¢tion VJII-Bjae method from [57] to express it as pair of type-Il problems
of sizen/2, which are solved as above; for odd we use a
method from [58] to re-express the type-IV problem as a size-
A. Automatic generation of trigonometric-transform codelets real-input DFT (with a complicated re-indexing that requires
. ) ._nho twiddle factors at all). For the type-l DCT/DST, however,
genfit doe_s not emplqy any speC|aI_ _trlgonometrlc\-Ne could not find any accurate algorithm to re-express the
transform algon_thm. Instegd, |_t tak_es the position that all theﬁ%nsform in terms of an equal-length real-input DFT, and thus
transforms are just DFTs in disguise. For ex_ample, a DCT’.We resort to the “slow” method of embedding it in a real-input
can be reduced to a DFT as follows. Consider the deﬁmn%’ﬁ- of length2n. All of our methods are observed to achieve

of the DCT-IV: the sameD(1/logn) Ly error as the Cooley-Tukey FFT [59].
n—1 - ( - l) (k " l) One can also compute symmetric DFTs by directly special-
Y[k] =2 Z X[j] cos ( JT3 2 > izing the Cooley-Tukey algorithm, removing redundant opera-
=0 n tions as we did for real inputs, to decompose the transform into
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smaller symmetric transforms [53], [56], [57]. Such a recursiv@ non-unit stride. Second, because the algorithm finds two-
strategy, however, would require eight new sets of codeletsway parallelism in the real and imaginary parts of a single
handle the different types of DCT and DST, and we judgddFT (as opposed to performing two DFTs in parallel), we

the cost in code size to be unacceptable. can completely parallelize DFTs of any size, not just even
sizes or powers of 2.
IX. How FEFTW3USESSIMD This SIMD algorithm is implemented in the codelets: FFTW

contains SIMD versions of both direct and twiddle codelets (as

This section discusses how FFTW exploits Spe8#ID gfine jn Sectiof IV-C]3). It may seem strange to implement
(Single-Instruction Multiple Data) instructions, which perforrr}he complex DFT in terms of the real DFT, which re-
the same operation in parallel on a data vector. These inst:ggh ’

. . _ ires much more involved algorithms. Our codelet generator
tions are implemented by many recent miCroprocessors, Sl , however, derives real codelets automatically from
as the Intel Pentium Il (SSE) and IV (SSE2), the AMD K

q 3DNow! q P b del A?mplex algorithms, so this is not a problem for us.
and successors ( ow!), and some Power models ( ‘On machines that support vectors of length 4, we view

tiVec)_. The d_esign .Of FFTW3 alloyved_ us to efficiently SUppor§IMD data as vectors of two complex numbers, and each
such instructions simply by plugging in new types of COdeletéodelet executes two iterations of its loop in parallel. (A

without d_lsturme the overall str u.cture.. . . similar strategy of codelets that operate on 2-vectors was
SIMD instructions are superficially similar to “vector pro-

» which desianed ‘ h argued in [11] to have benefits even without SIMD.) The
cessors”, which are designed to perform the same oPerat rce of this 2-way parallelism is the codelet loop, which
in parallel on an all elements of a data array (a “vector

e . )- Th@an arise from the Cooley-Tukey decomposition of a single
performance of “traditional” vector processors was best f(ird DFT, the decomposition of a multi-dimensional DFT, or

long vectprs that.are stored in contlguous. memory IOCat'orgﬂuser—specified vector loop. Four-way SIMD instructions are
Z?fi(::izprﬁmal algr?.nthkmsdwefrehde(\j/elopedztg lmgéementl_t(he .D';:)Toblematic, because the input or the output are not generally

y on this kind of hardware [22], [26]. Un|'e N stride-1, and arbitrary-stride SIMD memory operations are
vector processors, however, the SIMD vector length is sm re expensive than stride-1 operations. Rather than relying

and fixed (usually 2 or 4). Because microprocessors dep special algorithms that preserve unit stride, however, FFTW

on caches for performance, one cannot naively use SIMQIies on the planner to find plans that minimize the number

instructions to simulate a long-vector algorithm: while on vegs arbitrary-stride memory accesses

tor machines long vectorg generally yield better performance,Although compilers that perform some degree of automatic
:jhet perfc;rmance 01; ?hmmroprq'::es?c:;] drops;] ascsoon as { torization are common for SIMD architectures, these typ-
ata vectors excee € capacily of the cache. onsequeriwé fly require simple loop-based code, and we are not aware

SIMD instructions are better seen as a restricted form any that is effective at vectorizing FFTW, nor indeed of

|nsttruct|on-lltlav|(_—:'l paral(lje(ljl_sﬁm th?g;ﬁ ? dgtgz]enerate fIavqr y automatically vectorized code that is competitive on these
vector parallelism, and differen algorithms are require -way and 4-way SIMD architectures.

In FFTW, we experimented with two new schemes to im-
plement SIMD DFTs. The first scheme, initially developed by
S. Kral, involves a variant oflenfft  that automatically ex- X. CONCLUDING REMARKS

tracts SIMD parallelism from a sequential DFT program [44]. o, many years, research on FFT algorithms focused on
The major problem with this compiler is that it is machineg,e question of finding the best single algorithm, or the
specific: it ou'tputs a;sembly code, exploiting the peculiaritigg,st strategy for implementing an algorithm such as Cooley-
of the target instruction set. _ ~ Tukey. Unfortunately, because computer hardware is continu-
The second scheme relies on an abstraction layer consisyiig changing, the answer to this question has been continually
of C macros in the style of [60], and it is therefore semighanging as well. Instead, we believe that a more stable answer
portable (theC compiler must support SIMD extensions ifyay pe possible by changing the question: instead of asking
order for this scheme to work). To understand this SIMRnat is the best algorithm, one should ask what is the smallest
scheme, consider first a machine with length-2 vectors, sughjiection of simple algorithmic fragments whose composition

as the Pentium IV using the SSE2 instruction set (which cafans the optimal algorithm on as many computer architectures
perform arithmetic on pairs of double-precision floating-poings possible.

numbers). We view @omplexDFT as a pair ofeal DFTs: FFTW is a step in that direction, but is not the ultimate
DFT(A +i- B) = DFT(A) +i - DFT(B) , (6) answer, several open.problems. remain. Besides thg obvious

point that many possible algorithmic choices remain to be

where A and B are two real arrays. Our algorithm computegxplored, we do not believe our existing algorithmc fragments
the two real DFTs in parallel using SIMD instructions, andb be as simple or as general as they should. The key to almost

then it combines the two outputs according to Eg. (6). every FFT algorithm lies in two elements: strides (re-indexing)

This SIMD algorithm has two important properties. First, iind twiddle factors. We believe that our current formalism for
the data is stored as an array of complex numbers, as oppogeiblems expresses strides well, but we do not know how to

to two separate real and imaginary arrays, the SIMD loadgpress twiddle factors properly. Because of this limitation,
and stores always operate on correctly-aligned contiguows are currently forced to distinguish between decimation-in-
locations, even if the the complex numbers themselves hdirae and decimation-in-frequency Cooley-Tukey, which causes
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redundant coding. Our ultimate goal (for versi@x) is

(18]

to eliminate this redundancy so that we can express marfg
possible re-arrangements of the twiddle factors. (1]
[20]
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