
Everyone Loves File: File Storage Service (FSS) in Oracle Cloud
Infrastructure

Bradley C. Kuszmaul Matteo Frigo Justin Mazzola Paluska Alexander (Sasha) Sandler
Oracle Corporation

Abstract

File Storage Service (FSS) is an elastic filesystem pro-
vided as a managed NFS service in Oracle Cloud In-
frastructure. Using a pipelined Paxos implementation,
we implemented a scalable block store that provides lin-
earizable multipage limited-size transactions. On top of
the block store, we built a scalable B-tree that provides
linearizable multikey limited-size transactions. By us-
ing self-validating B-tree nodes and performing all B-
tree housekeeping operations as separate transactions,
each key in a B-tree transaction requires only one page
in the underlying block transaction. The B-tree holds
the filesystem metadata. The filesystem provides snap-
shots by using versioned key-value pairs. The entire sys-
tem is programmed using a nonblocking lock-free pro-
gramming style. The presentation servers maintain no
persistent local state, with any state kept in the B-tree,
making it easy to scale up and failover the presentation
servers. We use a non-scalable Paxos-replicated hash ta-
ble to store configuration information required to boot-
strap the system. The system throughput can be pre-
dicted by comparing an estimate of the network band-
width needed for replication to the network bandwidth
provided by the hardware. Latency on an unloaded sys-
tem is about 4 times higher than a Linux NFS server
backed by NVMe, reflecting the cost of replication.

1 Introduction

This paper describes Oracle Cloud Infrastructure File
Storage Service (FSS), a managed, multi-tenanted NFS
service. FSS, which has been in production for over a
year, provides customers with an elastic NFSv3 file ser-
vice [15]. Customers create filesystems which are ini-
tially empty, without specifying how much space they
need in advance, and write files on demand. The per-
formance of a filesystem grows with the amount of data
stored. We promise customers a convex combination of

100 MB/s of bandwidth and 3000 operations per sec-
ond for every terabyte stored. Customers can mount a
filesystem on an arbitrary number of NFS clients. The
size of a file or filesystem is essentially unbounded, lim-
ited only by the practical concerns that the NFS pro-
tocol cannot cope with files bigger than 16 EiB and
that we would need to deploy close to a million hosts
to store multiple exabytes. FSS provides the ability
to take a snapshot of a filesystem using copy-on-write
techniques. Creating a filesystem or snapshot is cheap,
so that customers can create thousands of filesystems,
each with thousands of snapshots. The system is robust
against failures since it synchronously replicates data
and metadata 5-ways using Paxos [44].

We built FSS from scratch. We implemented a Paxos-
replicated block store, called DASD, with a sophisti-
cated multipage transaction scheme. On top of DASD,
we built a scalable B-tree with multikey transactions
programmed in a lockless nonblocking fashion. Like
virtually every B-tree in the world, ours is a B+-tree. We
store the contents of files directly in DASD and store file
metadata (such as inodes and directories) in the B-tree.

Why not do something simpler? One could imag-
ine setting up a fleet of ZFS appliances. Each appli-
ance would be responsible for some filesystems, and we
could use a replicated block device to achieve reliability
in the face of hardware failure. Examples of replicated
block devices include [2, 4, 25, 54, 61]. We have such
a service in our cloud, so why not use it? It’s actually
more complicated to operate such a system than a sys-
tem that’s designed from the beginning to operate as a
cloud service. Here are some of the problems you would
need to solve:
• How do you grow such a filesystem if it gets too

big to fit on one appliance?
• How do you partition the filesystems onto the ap-

pliance? What happens if you put several small
filesystems onto one appliance and then one of the
filesystems grows so that something must move?

1

• How do you provide scalable bandwidth? If a
customer has a petabyte of data they should get
100 GB/s of bandwidth into the filesystem, but a
single appliance may have only a 10 Gbit/s net-
work interface (or perhaps two 25 Gbit/s network
interfaces).
• How do you handle failures? If an appliance

crashes, then some other appliance must mount the
replicated block device, and you must ensure that
the original appliance doesn’t restart and continue
to perform writes on the block device, which would
corrupt the filesystem.

This paper describes our implementation. Section 2
provides an architectural overview of FSS. The paper
then proceeds to explain the system from the top down.
Section 3 describes the lock-free nonblocking program-
ming style we used based on limited-size multipage
transactions. Section 4 shows how we organize meta-
data in the B-tree. Section 5 explains how we imple-
mented a B-tree key-value store that supports multikey
transactions. Section 6 explains DASD, our scalable
replicated block storage system. Section 7 describes our
pipelined Paxos implementation. Section 8 discusses
congestion management and transaction-conflict avoid-
ance. Section 9 describes the performance of our sys-
tem. Sections 10 and 11 conclude with a discussion of
related work and a brief history of our system.

2 FSS Architecture

This section explains the overall organization of FSS.
We provision many hosts, some of which act as stor-
age hosts, and some as presentation hosts. The storage
hosts, which include local NVMe solid-state-drive stor-
age, store all filesystem data and metadata replicated 5-
ways,1 and provide an RPC service using our internal
FSS protocol. The presentation hosts speak the standard
NFS protocol and translate NFS into the FSS protocol.

A customer’s filesystems appear as exported filesys-
tems on one or more IP addresses, called mount targets.
A single mount target may export several filesystems,
and a filesystem may be exported by several mount tar-
gets. A mount target appears as a private IP address
in the customer’s virtual cloud network (VCN), which
is a customizable private network within the cloud.
Most clouds provide VCNs in which hosts attached to
one VCN cannot even name hosts in another VCN.
Each mount target terminates on one of our presentation
hosts. A single mount target’s performance can be lim-
ited by the network interface of the presentation host,
and so to get more performance, customers can create
many mount targets that export the same filesystem.

1Data is erasure coded, reducing the cost to 2.5, see Section 3.

Orca
10.0.2.97

Orca

Orca
10.0.2.54

10.0.2.53

presentation
host

NFS Client

NFS Client

NFS Client

NFS Client Dendron

DASD

host
storage

Dendron

DASD

host
storage

Figure 1: FSS architecture. The NFS clients are on the
left, and belong to various customers. Hosts are shown
as boxes with solid edges and processes are shown with
dashed lines. The presentation hosts are in the mid-
dle, each running several Orca processes. The Orca
processes are connected to the various customer virtual
cloud networks (VCNs) on the left. The IP addresses
of each Orca’s mount target is shown. The Orca pro-
cess are also connected to our internal VCN, where they
can communicate with the storage hosts. The storage
hosts contain NVMe drives and run both the Dendron
and DASD processes.

Figure 1 shows how the FSS hosts and processes
are organized. The customer sets up NFS clients in
their VCN. Our presentation hosts terminate NFS con-
nections from the clients in per-mount-target Orca pro-
cesses. The Orca processes translate NFS requests into
the FSS protocol, and send the FSS to our storage hosts.
In the future, the presentation hosts might speak other
client protocols, such as SMB [55] or NFSv4 [68].

To ensure isolation between filesystems we depend on
a combination of process isolation on our servers, VCN
isolation, and encryption. All data stored in the storage
hosts or in flight in the FSS protocol is encrypted with
a file-specific encryption key that derives from a filesys-
tem master key. The NFSv3 protocol is not encrypted,
however, so data arriving at an Orca is potentially vul-
nerable. To mitigate that vulnerabilty, we rely on VCN
isolation while the data is in flight from the NFS client
to the presentation host, and use the presentation host’s
process isolation to protect the data on the presentation
host. All data and file names are encrypted as soon as
they arrive at an Orca, and each Orca process serves only
one mount target.

Each storage host contains NVMe drives and runs two
processes, DASD and Dendron. DASD, described in
Section 6, provides a scalable block store. Dendron im-
plements a B-tree (Section 5) in which it maintains the
metadata (Section 4) for the filesystem.

We chose to replicate filesystems within a data cen-

2

ter rather than across data centers within a metropoli-
tan area or across a long distance. There is a tradeoff
between latency and failure tolerance. Longer-distance
replication means the ability to tolerate bigger disas-
ters, but incurs longer network latencies. We chose lo-
cal replication so that all of our operations can be syn-
chronously replicated by Paxos without incurring the la-
tency of long-distance replication. It turns out that most
of our customers rely on having a functional disaster-
recovery plan, and so they’re more interested in single-
data center file system performance than synchronous
replication. In the future, however, we may configure
some filesystems to be replicated more widely.

Within a data center, hosts are partitioned into groups
called fault domains. We typically employ 9 fault do-
mains. In a small data center, a fault domain might be
a single rack. In a large data center, it might be a group
of racks. Hosts within a fault domain are likely to fail
at the same time (because they share a power supply or
network switch). Hosts in different fault domains are
more likely to fail independently. We employ 5-way
Paxos replicated storage that requires at least 3 out of
each group of 5 Paxos instances in order to access the
filesystems. We place the Paxos instances into different
fault domains. When we need to upgrade our hosts, we
can bring down one fault domain at a time without com-
promising availability. Why 5-way replication? During
an upgrade, one replica at a time is down. During that
time, we want to be resilient to another host crashing.

We also use the same 5-way-replicated Paxos machin-
ery to run a non-scalable hash table that keeps track of
configuration information, such a list of all the presen-
tation hosts, needed for bootstrapping the system.

All state (including NLM locks, leases, and idem-
potency tokens) needed by the presentation servers is
maintained in replicated storage rather than in the mem-
ory of the presentation hosts. That means that any Orca
can handle any NFS request for the filesystems that it
exports. The view of the filesystem presented by differ-
ent Orcas is consistent.

All memory and disk space is allocated when the host
starts. We never run malloc() after startup. By con-
struction, the system cannot run out of memory at run-
time. It would likely be difficult to retrofit this memory-
allocation discipline into old code, but maintaining the
discipline was relatively straightforward since the entire
codebase is new.

3 Multi-Page Store Conditional

FSS is implemented on top of a distributed B-tree, which
is written on top of a a distributed block store with multi-
page transactions (see Figure 2). This section describes
the programming interface to the distributed block store

Customer program
Operating system

NFS
FSS filesystem

B-tree
MPSC
Paxos

Figure 2: Each module is built on the modules below.

and how the block store is organized into pages, blocks,
and extents.

The filesystem is a concurrent data structure that must
not be corrupted by conflicting operations. There can
be many concurrent NFS calls modifying a filesystem:
one might be appending to a file, while another might
be deleting the file. The filesystem maintains many in-
variants. One important invariant is that every allocated
data block is listed in the metadata for exactly one file.
We need to avoid memory leaks (in which an allocated
block appears in no file), dangling pointers (in which
a file contains a deallocated block), and double alloca-
tions (in which a block appears in two different files).
There are many other invariants for the filesystem. We
also employ a B-tree which has its own invariants. We
live under the further constraint that when programming
these data structures, we cannot acquire a lock to protect
these data structures, since if a process acquired a lock
and then crashed it would be tricky to release the lock.

To solve these problems we implemented FSS us-
ing a nonblocking programming style similar to that of
transactional memory [32]. We use a primitive that we
call multi-page store-conditional (MPSC) for access-
ing pages in a distributed block store. An MPSC op-
eration is a “mini-transaction” that performs an atomic
read-and-update of up to 15 pages. All page reads and
writes follow this protocol:

1. Read up to 15 pages, receiving the page data and a
slot number (which is a form of a version tag [38]).
A page’s slot number changes whenever the page
changes. You can read some pages before deciding
which page to read next, or you can read pages in
parallel. Each read is linearizable [34].

2. Compute a set of new values for those pages.
3. Present the new page values, along with the pre-

viously obtained slot numbers, to the MPSC func-
tion. To write a page requires needs a slot number
from a previous read.

4. The update will either succeed or fail. Success
means that all of the pages were modified to the
new values and that none of the pages had been oth-
erwise modified since they were read. A successful

3

S19 page 0 data

S1 page 1 data

S2 page 2 data

S3 page 3 data

S4 page 4 data

G249
RW
C80

S5 page 5 data

S6 page 6 data

S7 page 7 data

G9
RW
C42

G9
RW
C42

G9
RW
C42

Extent 2

S19 page 0 data

S1 page 1 data

S2 page 2 data

S3 page 3 data

S4 page 4 data

G9
RW
C80

S5 page 5 data

S6 page 6 data

S7 page 7 data

G9
RW
C42

G9
RW
C19

G9
RW
C42

b
lo

ck
 0

b
lo

ck
 1

b
lo

ck
 2

b
lo

ck
 3

Extent 1

S22 page 0 data

S208 page 1 data

S2 page 2 data

S3 page 3 data

S4 page 4 data

G998

RO

C42

S18 page 5 data

S9 page 6 data

S23 page 7 data

G998

RW

C100

Extent 20

b
lo

ck
 0

t
b
lo

ck
 1

Figure 3: Pages, blocks, and extents. Three extents are
shown, each with an array of pages. Each page has a
slot. E.g., page 0 of extent 1 has slot 19. Each block
has ownership. The first block of extent 1 is owned by
customer 80 (“C80”), is read-write (“RW”), and is on its
9th allocation generation (“G9”). Extents 1 and 2 each
have 2 pages per block and 4 blocks, whereas extent 20
has 4 pages per block and only 2 blocks.

update linearizes with other reads and MPSC up-
dates. A failure results in no changes.

In addition to reading and writing pages, an MPSC can
allocate or free space in the distributed block store.

An MPSC could fail for many reasons. For example,
if, between reading a page and attempting an MPSC,
some other transaction wrote the page, the MPSC will
fail. Even if there is no conflict, an MPSC may fail due
to, e.g., packet loss or Paxos leadership changes. Even
if a transaction succeeds, the caller may receive an error
indication, e.g., if network fails between the update’s
commit and the caller notification. Our implementa-
tion deliberately introduces failures (sometimes called
fuzzing [56]) with a small probability rate, so that all of
the error-handling code paths are exercised frequently,
even in production.

Pages and Blocks. We subdivide the distributed block
store into a hierarchy of pages, blocks, and extents, as
shown in Figure 3. An MPSC performs an atomic up-
date on a set of pages. A block includes one or more
pages, and is the unit on which we do bookkeeping for
allocation. To reduce bookkeeping overheads on small
pages, we allocate relatively large blocks. To keep trans-
actions small, we update relatively small pages. An ex-

Geometry Page Block Extent RF EC
size size size

B-tree 8 KiB 1 MiB 16 GiB 5 1
8 KiB 8 KiB 8 KiB 32 GiB 5 5:2
32 KiB 32 KiB 32 KiB 128 GiB 5 5:2
256 KiB 32 KiB 256 KiB 256 GiB 5 5:2
2 MiB 32 KiB 2 MiB 256 GiB 5 5:2

Figure 4: Extent geometries. The B-tree extents con-
tain metadata organized as a B-tree. The other extents
contain file contents, and are identified by their block
size. For each extent the page size, block size, extent
size, replication factor (RF), and erasure-coding (EC)
are shown.

tent is an array of pages, up to 256 GiB total, and is
implemented by a replicated Paxos state machine.

For example, one kind of extent contains 256 GiB
of disk-resident data, organized in 2 MiB blocks with
32 KiB pages, and is replicated 5 ways using 5:2 era-
sure coding (an erasure-coding rate of 2/5) [62]. Thus
the 256 GiB of disk-resident data consumes a total of
640 GiB of disk distributed across 5 hosts.

An extent’s geometry is defined by its page size, block
size, extent size, replication factor, and erasure-coding
rate. Once an extent is created, its geometry cannot
change. Figure 4 shows the extent geometries that we
use for file data and metadata. All of our extents are 5-
way replicated within a single data center. The pages in
extents used for file contents are erasure coded using a
5:2 erasure coding rate, so that the overhead of storing
a page is 2.5 (each replica stores half a page, and there
are 5 replicas). The B-tree data is mirrored, which can
be thought of as 5:1 erasure coding.

We size our extents so there are hundreds of extents
per storage host to ease load balancing. We use paral-
lelism to recover the missing shards when a host crashes
permanently—each extent can recover onto a different
host.
Block ownership. When operating a storage system
as a service, it is a great sin to lose a customer’s data. It
is an even greater sin to give a customer’s data to some-
one else, however. To avoid the greater sin, blocks have
ownership information that is checked on every access.

A block’s ownership information includes a version
tag, called its generation, as well as 64-bit customer
identifier, and a read-only bit. When accessing a block,
the generation, customer id, and read-only bit must
match exactly. This check is performed atomically with
every page access. When a block is allocated or deallo-
cated its generation changes. A tagged pointer to a page
includes the block ownership information, as well as the
extent number and page number. A block’s pointer is
simply the tagged pointer to the block’s first page.

4

The problem that block ownership solves can be il-
lustrated as follows. When data is being written into
a new file, we allocate a block and store the block’s
pointer in the B-tree as a single transaction. To read data
from a file, Orca first obtains the block pointer by ask-
ing Dendron to read the B-tree. Orca caches that block
pointer, so that it can read the data without the over-
head of checking the B-tree again on every page access.
Meanwhile, another thread could truncate the file, caus-
ing the block to be deallocated. The block might then
be allocated to a file belonging to a different customer.
We want to invalidate Orca’s cached pointers in this sit-
uation, so we change the block ownership. When Orca
tries to use a cached pointer to read a deallocated page,
the ownership information has become invalid, and the
access fails, which is what we want.

Each of our read operations is linearizable, meaning
that they are totally ordered with respect to all MPSC
operations and the total ordering is consistent with real
time. Although our read operations linearize, if you
perform several reads they take place at different times,
meaning that the reads may not be mutually consistent.
It’s easy to trick a transactional-memory-style program
into crashing, e.g., due to a failed assertion. For ex-
ample, if you have two pages in a doubly linked list,
you might read one page, and then follow a pointer to
the second page, but by the time you read the second
page it no longer points back to the first page. Getting
this right everywhere is an implementation challenge,
leading some [10, 16] to argue that humans should not
program transactional memory without a compiler. We
have found this problem to be manageable, however,
since an inconsistent read cannot lead to a successful
MPSC operation, so the data structure isn’t corrupted.

4 A Filesystem Schema

This section explains how we represent the filesystem
metadata in our B-tree. FSS implements an inode-based
write-in-place filesystem using a single B-tree to hold its
metadata. What does that mean? “Inode-based” means
that each file object has an identifier, called its handle.
The handle is used as an index to find the metadata for
a file. “Write-in-place” means that updates to data and
metadata usually modify an existing block of data. (As
we shall see, snapshots introduce copy-on-write behav-
ior.) “Single B-tree to hold the metadata” means there
is only one B-tree per data center. Our service provides
many filesystems to many customers, and they are all
stored together in one B-tree.

The B-tree must support various metadata operations.
For example, given an object’s handle, we need to find
and update the fixed-size part of the object’s metadata,
which includes the type of the object (e.g., regular, di-

Key-value pairs:
leaderblock: 0→ next F .
superblock: F,0→ next D, next C, keys.
inode: F,1,D,C,2,S→ stat-data.
name map: F,1,D,C = 0,3,N,S→ F,D′,C′,S.
cookie map: F,1,D,C = 0,4,c,S→ F,D′,C′,S,N.
block map: F,1,D,C,5,o,S→ block ID and size.

Glossary:
F filesystem number.
D Directory unique id.
C File unique id.
S Snapshot number.
o Offset in file.
N Filename in directory.
c Directory iteration cookie.
F,D′,C′,S The handle of a file in a directory.

Figure 5: Filesystem schema showing key→ value pair
mappings. The small numbers (e.g., “1”) are literal num-
bers inserted between components of a key to disam-
biguate key types and force proper B-tree sort ordering.
For directories, C = 0.

rectory, symlink), permissions bits (rwxrwxrwx), owner,
group, file size, link count, and timestamps. Given a file
handle and an offset, we need to find the tagged pointer
of the block holding data at that offset, so that reads or
write can execute. Given a directory handle and a file-
name we need to be able perform a directory lookup,
yielding a file handle. For a directory, we need to iterate
through the directory entries. In NFS this is performed
using a 64-bit number called a cookie. Given a directory
handle and a cookie we need to find the directory entry
with the next largest cookie.

Our strategy is to create B-tree key-value pairs that
make those operations efficient. We also want to min-
imize the number of pages and extents that we access
in each transaction. Every B-tree key is prefixed with
a filesystem number F , so that all the keys for a given
filesystem will be adjacent in the B-tree. Our handles are
ordered tuples of integers 〈F,D,C,S〉, where D a unique
number for every directory, C is a unique number for ev-
ery file (C = 0 for directories), and S is a snapshot num-
ber. A file’s handle depends on the directory in which
it was created. The file can be moved to another direc-
tory after it is created, but the file’s handle will always
mention the directory in which the file was originally
created.

Figure 5 shows the schema for representing our
filesystems. We encode the B-tree keys in a way that
disambiguates the different kinds of key value pairs and
sorts the key-value pairs in a convenient order. For ex-
ample, all the pairs for a given filesystem F appear to-
gether, with the superblock appearing first because of

5

the “0” in its key. Within the filesystem, all the non-
superblock pairs are sorted by D, the directory number.
For a directory, the directory inode sorts first, then come
the name map entries for the directory, and then the
cookie map, then come all the inodes for the files that
were created in that directory. In that set for each file,
the file inode sorts first, followed by the block maps for
that file. Finally two entries that are the same except for
the snapshot number are sorted by snapshot number.

We implement snapshots using copy-on-write at the
key-value pair level, rather than doing copy-on-write in
the B-tree data structure or at the block level [13, 28,
35, 43, 49, 63, 65, 66, 72]. In the interest of space, we
don’t show all the details for snapshots, but the basic
idea is that each key-value pair is valid for a range of
snapshots. When looking up a pair for snapshot S, we
find the pair whose key has the largest snapshot number
that’s no bigger than S.

Our key-value scheme achieves locality in the B-tree.
When a file is created it is lexicographically near its par-
ent directory, and the file’s block maps and fixed-sized
metadata are near each other. (If the file is later moved,
it still appears near the original parent directory.) This
means that if you create a file in a directory that has
only a few files in it, it’s likely that the whole transac-
tion to update the directory inode, add directory entries,
and create the file inode will all be on the same page,
or at least in the same extent, since the B-tree maintains
maintains block as well as page locality (see Section 5).

We use multiple block sizes (which are shown in Fig-
ure 4) to address the tension between fragmentation and
metadata overhead. Small blocks keep fragmentation
low for small files. Big blocks reduce the number of
block map entries and other bookkeeping overhead for
big files. In our scheme the first few blocks of a file are
small, and as the file grows the blocks get bigger. For
files larger than 16 KiB, the largest block is no bigger
than 1/3 the file size, so that even if the block is nearly
empty, we have wasted no more than 1/3 of our stor-
age. We sometimes skip small-block allocation entirely.
For example if the NFS client writes 1 MiB into a newly
created file, we can use 256 KiB blocks right away.

5 The B-tree

To hold metadata we built a B-tree [7] on top of MPSC.
MPSC provides transactions that can update up to 15
pages, but we want to think about key-value pairs, not
pages, and we want B-tree transactions to be able in-
clude non-B-tree pages and blocks, e.g., to allocate a
data block and store its tagged pointer in a B-tree key-
value pair. The B-tree can perform transactions on a
total of 15 values, where a value can be a key-value pair,
or a non-B-tree page write or block allocation.

Consider the simple problem of executing a B-tree
transaction to update a single key-value pair. How many
pages must be included in that transaction? The standard
B-tree algorithm starts at the root of the tree and follows
pointers down to a leaf page where it can access the pair.
To update the leaf we need to know that it is the proper
page, and the way we know that is by having followed a
pointer from the leaf’s parent. Between reading the par-
ent and reading the leaf, however, the tree might have
been rebalanced, and so we might be reading the wrong
leaf. So we we need to include the parent in the transac-
tion. Similarly, we need to include the grandparent and
all the ancestors up to the root. A typical B-tree might be
5 or 6 levels deep, and so a single key-value pair update
transaction involves 5 or 6 pages, which would limit us
to 2 or 3 key-value pairs per transaction. Furthermore,
every transaction ends up including the root of the B-
tree, creating a scalability bottleneck.

Our solution to this problem is to use self-validating
pages, which contain enough information that we can
determine if we read the right page by looking at that
page in isolation. We arrange every page to “own” a
range of keys, for the page to contain only keys in that
range, and that every possible key is owned by exactly
one page. To implement this self validation, we store in
every page a lower bound and upper bound for the set
of keys that can appear in the page (sometimes called
“fence keys” [26, 47]), and we store the height of the
page (leaf pages are height 0). When we read a page to
look up a key, we verify that the page we read owns the
key and is the right height, in which case we know that
if that page is updated in a successful transaction, that
we were updating the right page. Thus, we do not need
to include the intermediate pages in the MPSC operation
and we can perform B-tree transactions on up to 15 keys.

We usually skip accessing the intermediate B-tree
nodes altogether by maintaining a cache that maps keys
to pages. If the cache steers us to a wrong page, either
the page won’t self validate or the transaction will fail, in
which case we simply invalidate the cache and try again.
If a key is missing from the cache, we can perform a
separate transaction that walks the tree to populate the
cache. It turns out that this cache is very effective, and
for virtually all updates we can simply go directly to the
proper page to access a key-value pair.

Another problem that could conceivably increase the
transaction size is tree rebalancing. In a B-tree, tree
nodes must generally be split when they get too full or
merged when they get too empty. The usual rule is that
whenever one inserts a pair into a node and it doesn’t fit,
one first splits the node and updates the parent (possi-
bly triggering a parent split that updates the grandpar-
ent, and so on). Whenever one deletes a pair, if the
node becomes too empty (say less than 1/4 full), one

6

Block 99 Block 12 Block 5

Block 15

Block 42

Block 16

Block 7

[A,B) [C,F) [F,G) [G,J) [J,M) [M,N)[N,P) [V,Z) [P,S) [S,V)[B,C)

Figure 6: The B-tree comprises block (in blue) and
pages (in pink). The pages form a tree. The leaf
pages, where the key-value pairs are stored, form a dou-
bly linked list (shown with dashed green lines). Each
leaf page is responsible for a range of keys, e.g., [C,F)
means the keys from C inclusive to F exclusive. Each
block holds a key range of pages for one level. For ex-
ample, Block 5 has all the leaf pages in the range [G,P).

merges nodes, updating the parent (which can possibly
trigger a parent merge that updates the grandparent, and
so on). This means that any insertion or deletion can
add as many pages to a transaction as the height of the
tree. Those rebalancings are infrequent so they don’t in-
troduce a scalability bottleneck, but they do make our
MPSC operations too big.

Our solution to the rebalancing problem is to rebal-
ance in a separate transaction. When inserting if we en-
counter a page overflow, we abort the transaction, split
the page in a separate transaction, and restart the origi-
nal transaction. We split the page even if it is apparently
nearly empty: as long as there are two keys we can split
the page. For merges, we delete keys from the page, and
then do a separate transaction afterward to rebalance the
tree. It’s possible that a page could end up empty, or
nearly empty, and that due to some crash or packet loss,
we forget to rebalance the tree. That’s OK because we
fix it up the next time we access the page.

To improve locality we exploit both the page and
block structure of MPSC. Figure 6 shows how the B-tree
is organized to exploit block locality as well as page lo-
cality. Each page is responsible for a key range, and the
union of the key ranges in a block is a single key range.
When splitting a page, we place the new page into the
same block as the old page, and if the block is full,
we insert a new block. If the B-tree schema strives to
keep keys that will appear in the same transaction lexi-
cographically near each other, locality causes those keys
to likely be in the same page, or at least the same block.
Our MPSC implementation optimizes for the case where
some pages of a transaction are in the same extent. With
the schema described in Section 4, this optimization is
worth about a 20% performance improvement for an op-
eration such as untarring a large tarball.

The choice of 15 pages per transaction is driven by
the B-tree implementation. There is one infrequent op-
eration requiring 15 pages. It involves splitting a page

in a full block: a new block is allocated, block headers
are updated, and the pages are moved between blocks.
Most transactions touch only one or two pages.

6 DASD: Not Your Parent’s Disk Drive

This section explains how we implemented MPSC using
Paxos state machines (which we discuss further in Sec-
tion 7). MPSC is implemented by a distributed block
store, called DASD2. A single extent is implemented by
a Paxos state machine, so multipage transactions within
an extent is straightforward. To implement transactions
that cross extents, we use 2-phase commit.

Given that Paxos has provided us with a collection
of replicated state machines, each with an attached disk,
each implementing one extent, we implement two-phase
commit [29,46,50] on top of Paxos. The standard prob-
lem with two-phase commit is that the transaction coor-
dinator can fail and the system gets stuck. Our extents
are replicated, so we view the participants in a transac-
tion as being unstoppable.

It would be easy to implement two-phase commit
with 3n messages. One could send n ‘prepare’ mes-
sages that set up the pages, then n ‘decide’ messages
that switch the state to commited, and then n ‘release’
messages that release the resources of the transaction.
(Each message drives a state transition, which is repli-
cated by Paxos.) The challenge is to implement two-
phase commit on n extents with only 2n messages and
state changes. Every filesystem operation would benefit
from the latency being reduced by 1/3.

To perform an atomic operation with only 2n mes-
sages, for example on 3 pages, the system progresses
through the states shown in Figure 7. The system will
end up constructing and tearing down, in the Paxos state
machine, a doubly-linked (not circular) list of all the
extents in the transaction. Each of these steps is initi-
ated by a message from a client, which triggers a state
change in one Paxos state machine (which in turn re-
quires several messages to form a consensus among the
Paxos replicas). The client waits for an acknowledgment
before sending the next message.

1. Extent A receives a prepare message. A enters the
prepared state, indicated by “P(data)”, and records
its part of the transaction data and its part of the
linked list (a null back pointer, and a pointer to B).

2. Extent B receives a prepare message, enters the pre-
pared state, and records its data and pointers to A
and C.

3. Extent C receives a prepare-and-decide message,
enters the decided state (committing the transac-

2Direct-Access Storage Device (DASD) was once IBM’s terminol-
ogy for disk drives [37].

7

A B C
ti

m
e

P(data)

P(data) P(data)

P(data) P(data) D(wrote)

R(wrote) D(wrote)R(wrote)

R(wrote) R(wrote)R(wrote)

R(wrote) P(data) D(wrote)

Figure 7: Three extents performing a DASD transaction.
Each column is an extent, and each row is a point in
time, with time moving downward. A double-arrowed
line shows two extents pointing at each other. A single-
arrowed line shows one extent pointing at the other, with
no pointer back. Ground represents a null pointer.

tion), and records its data and the back pointer to
B, indicated by “D(wrote)”.

4. Extent A receives a decide-and-release message,
notes that the transaction is committed, and re-
leases its resources (such as memory) associated
with the transaction, indicated by “R(wrote)”. The
head of the linked list is now gone.

5. Extent B receives a decide-and-release message,
notes the commit, and releases its resources.

6. Extent C receives a release message (it had already
decided) and releases its resources.

Thus we implement two-phase commit in exactly 2n
messages with 2n state transitions. Note that the final
transition of state C doesn’t actually need to be done
before replying to the client, and could be piggybacked
into the prepare step of the next transaction, potentially
reducing the latency to 2n−1 messages.

The system maintains the invariant that either a pre-
fix or a suffix of the linked list exists, which is useful
if the transaction is interrupted. There are two ways
that the system can be interrupted, before the commit (in
which case the transaction will abort), or after (in which
case the cleanup is incomplete). The prefix-suffix prop-
erty helps in both of these cases. If the transaction gets
aborted (at or before step 3) then a prefix exists. If we
encounter a prepared state, we can follow the linked list
forward until we either find a dangling pointer or a de-
cided state. If we find a dangling pointer, we can delete
the prepare record that contained the dangling pointer,
preserving a prefix. (At the final point, C, of the linked
list, we must extract a promise that C will never decide
that the transaction commits. This can be accomplished

by introducing a conflict on the read slot for the page.) If
we find a decided state then the cleanup was interrupted,
so it can proceed back along the linked list until we find
the beginning or a dangling pointer, and move the state
forward to released.

Our scheme relies on the fact that each state transition
occurs one after the other, and hence the critical path of
the transition is also 2n messages. There are schemes in
which one can move the states forward in parallel. For
example, one could broadcast “prepare” messages to all
the extents, then have one extent decide, and then broad-
cast decide messages to them all, then release messages,
so that the critical path would be only 4 long. This re-
sults in 3n state transitions (minus one or two, depend-
ing on how clever you are.) If you think that big trans-
actions are common, that’s valuable, but we have found
that most transactions are short so it’s better to do the
transaction serially.

We optimize the case when there are several pages in
a single extent to use fewer messages.

7 Pipelined Paxos

In this section we explain our Paxos implementation,
and in particular how we pipeline Paxos operations.

Lamport-Paxos [44, 45] is an algorithm to achieve
consensus on a single value. Lamport-Paxos requires
two phases, called phase 1 and phase 2 by Lamport.

To achieve consensus on a log (as opposed to one
value), one common algorithm is Multi-Paxos [17],
which treats the log as an array indexed by slot, run-
ning Lamport-Paxos independently on each array ele-
ment. It turns out that you can run a “vector” phase 1
for infinitely many elements of the array with a single
pair of messages, and that you can reuse the outcome
of phase 1 for as many phase 2 rounds as you want. In
this setup, people tend to call phase-1 “master election”
and infer all sorts of wrong conclusions, e.g. that there
is only one master at any time and that phase 1 is some
kind of “failover”.

In Multi-Paxos, if the operation on slot S+1 depends
on the state after slot S, you must wait for slot S (and
all previous slots) to finish phase 2. (We don’t say
“commit” to avoid confusion with two-phase commit,
which is a different protocol.) This Multi-Paxos is not
pipelined.

You can pipeline Multi-Paxos with a small modifica-
tion. You tag each log entry with a unique log sequence
number (LSN) and you modify Paxos so that an accep-
tor accepts slot S + 1 only if it agrees on the LSN of
slot S. Thus, the Paxos phase 2 message is the Lamport
phase 2 plus the LSN of the previous slot. By induction,
two acceptors that agree on a LSN agree on the entire
past history.

8

Now you can issue phase 2 for S+ 1 depending on
S without waiting for S to complete, because the accep-
tance of S+1 retroactively confirms all speculations that
you made.

The pipelined Multi-Paxos state, per slot, is the
Lamport-Paxos state (a ballot B and the slot’s contents)
plus the LSN. You can use whatever you want as LSNs,
as long as they are unique, but a convenient way to gen-
erate LSNs is to use the pair 〈E,S〉 where the epoch E
must be unique. As it happens, Lamport phase 1 desig-
nates a single winner of ballot B, so you can identify E
with the winner of ballot B in phase 1, and be guaran-
teed that nobody else wins that ballot. In the E = B case,
you can reduce the per-slot state to the single-value E,
with the dual-role of LSN for pipelining and of ballot
for Lamport-Paxos.

Our Paxos algorithm is almost isomorphic to
Raft [60]. Essentially Raft is Multi-Paxos plus condi-
tional LSNs plus E = B. However, Raft always requires
an extra log entry in order to make progress, and cannot
be done in bounded space. If you recognize that you are
just doing good-old Paxos, then you can make progress
by storing a separate ballot B in constant space.

The idea of the acceptance conditional on the pre-
vious LSN appeared in viewstamped replication [58]
(which didn’t discuss pipelining). It is used specifically
for pipelining in Zookeeper, except that Zookeeper tries
to reinvent Paxos, but incorrectly assumes TCP is an
ideal pipe [6]. Conditional acceptance is also used in
Raft in the same way as in viewstamped replication, ex-
cept that Raft lost the distinction between proposer and
acceptor, which prevents it from having a speculative
proposer state that runs ahead of acceptors.

Recovery. Here we explain how our Paxos system re-
covers from failures.

The on-disk state of a Paxos acceptor has two main
components: the log (of bounded size, a few MB), and a
large set of page shards (tens of GB). A shard comprises
an erasure-coded fragment of a page and some header
information such as a checksum. To write a shard, the
Paxos proposer appends the write command to the log
of multiple acceptors. When a quorum of acceptors has
accepted the command, the write is considered done (or
“learned” in Paxos terminology). The proposer then in-
forms acceptors that a command has been learned, and
acceptors write the erasure-coded shard to disk.

As long as all acceptors receive all log entries, this
process guarantees that all acceptors have an up-to-date
and consistent set of shards. However, acceptors may
temporarily disappear for long enough that the only way
for the acceptor to make progress is to incur a log dis-
continuity. We now must somehow rewrite all shards
modified by the log entries that the acceptor has missed,
a process called recovery.

The worst-case for recovery is when we must rewrite
the entire set of shards, for example because we are
adding a new acceptor that is completely empty. In this
long-term recovery, as part of their on-disk state, accep-
tors maintain a range of pages that need to be recovered,
and they send this recovery state back to the proposer.
The proposer iterates over such pages and overwrites
them by issuing a Paxos read followed by a conditional
Paxos write, where the condition is on the page still be-
ing the same since the read. When receiving a write, the
acceptor subtracts the written page range from the to-be-
recovered page range, and sends the updated range back
to the proposer.

Long-term recovery overwrites the entire extent. For
discontinuities of short duration, we use a less expensive
mechanism called short-term recovery. In addition to
the long-term page range, acceptors maintain a range of
log slots that they have lost, they update this range when
incurring a discontinuity, and communicate back this
slot range to the proposer. The proposer, in the Paxos
state machine, maintains a small pseudo-LRU cache of
identifiers of pages that were written recently, indexed
by slot. If the to-be-recovered slot range is a subset of
the slot range covered by the cache, then the proposer
issues all the writes in the slot range, in slot order, along
with a range R whose meaning is that the present write
is the only write that occurred in slot range R. When
receiving the write, the acceptor subtracts R from its to-
be-recovered slot range and the process continues un-
til the range is empty. If the to-be-recovered slot range
overflows the range of the cache, the acceptor falls into
long-term recovery.

In practice, almost all normal operations (e.g., soft-
ware deployments) and unscheduled events (e.g., power
loss, network disruption) are resolved by short-term re-
covery. We need long-term recovery when loading a
fresh replica, and (infrequently) when a host goes down
for a long time.

Checkpointing and logging. Multi-Paxos is all about
attaining consensus on a log, and then we apply that log
to a state machine. All memory and disk space in FSS
is statically allocated, and so the logs are of a fixed size.
The challenge is to checkpoint the state machine so that
we can trim old log entries. The simplest strategy is
to treat the log as a circular buffer and to periodically
write the entire state machine into the log. Although
for DASD extents, the state machine is only a few MB,
some of our other replicated state machines are much
larger. For example we use a 5-way replicated hash ta-
ble, called Minsk, to store configuration information for
bootstrapping the system: given the identity of the five
Minsk instances, a Dendron instance can determine the
identity of all the other Dendron instances. If the Paxos
state machine is large, then checkpointing the state ma-

9

chine all at once causes a performance glitch.
Here’s a simple scheme to deamortize checkpointing.

Think of the state machine as an array of bytes, and ev-
ery operation modifies a byte. Now, every time we log
an update to a byte, we also pick another byte from the
hash table and log its current value. We cycle through
all the bytes of the table. Thus, if the table is K bytes
in size, after K update operations we will have logged
every byte in the hash table, and so the most recent 2K
log entries have enough information to reconstruct the
current state of the hash table. We don’t need to store
the state machine anywhere, since the log contains ev-
erything we need.

This game can be played at a higher level of abstrac-
tion. For example, suppose we think of the hash table
as an abstract data structure with a hash_put opera-
tion that is logged as a logical operation rather than as
operations on bytes. In that case every time we log a
hash_put we also log the current value of one of the
hash table entries, and take care to cycle through all the
entries. If the hash table contains K key-value pairs, then
the entire hash table will be reconstructable using only
the most recent 2K log entries. This trick works for a
binary tree too.

8 Avoiding Conflicts

This section outlines three issues related to transaction
conflicts: avoiding too much retry work, avoiding con-
gestion collapse, and reducing conflicts by serializing
transactions that are likely to conflict.

In a distributed system one must handle errors in a
disciplined fashion. The most common error is when a
transaction is aborted because it conflicts with another
transaction. Retrying transactions at several different
places in the call stack can cause an exponential amount
of retrying. Our strategy is that the storage host does not
retry transactions that fail. Instead it attempts to com-
plete one transaction, and if it fails the error is returned
all the way back to Orca which can decide whether to
retry. Orca typically sets a 55 s deadline for each NFS
operation, and sets a 1 s deadline for each MPSC. Since
the NFS client will retry its operation after 60 s, it’s OK
for Orca to give up after 55 s.

In order to avoid performance collapse, Orca employs
a congestion control system similar to TCP’s window-
size management algorithm [71]. Some errors, such as
transaction conflicts, impute congestion. In some situ-
ations the request transaction did not complete because
some “housekeeping” operation needed to be run first
(such as to rebalance two nodes of the B-tree). Doing
the housekeeping uses up the budget for a single trans-
action, so an error must returned to Orca, but in this case
the error does not impute congestion.

When two transactions conflict, one aborts, which is
inefficient. We use in-memory locking to serialize trans-
actions that are likely to conflict. For example, when
Orca makes an FSS call to access an inode, it sends
the request to the storage host that is likely to be the
Paxos leader for the extent where that inode is stored.
That storage host then acquires an in-memory lock so
that two concurrent calls accessing the same inode will
run one after another. Orca maintains caches that map
key ranges to extent numbers and extent numbers to the
leader’s IP address. Sometimes one of the caches is
wrong, in which case, as a side effect of running the
transaction, the storage host will learn the correct cache
entries, and inform Orca, which will update its cache.
The in-memory lock is used for performance and is not
needed for correctness. The technique of serializing
transactions that are likely to conflict is well known in
the transactional-memory literature [48, 73].

9 Performance

In the introduction we promised customers a convex
combination of 100MB/s of bandwidth and 3000 IOPS
for every terabyte stored. Those numbers are through-
put numbers, and to achieve those numbers the NFS
clients may need to perform operations in parallel. This
section first explains where those throughput numbers
come from, and then discusses FSS latency.

In order to make concrete throughput statements, we
posit a simplified model in which the network band-
width determines performance. The network bottle-
neck turns out to be on the storage hosts. If VNICs on
the NFS clients are the bottleneck, then the customer
can add NFS clients. If the presentation host is the
bottleneck, then additional mount targets can be provi-
sioned. The performance of the NVMe is fast compared
to the several round trips required by Paxos (in contrast
to, e.g., Gaios, which needed to optimize for disk la-
tency instead of network latency because disks were so
slow [11]).

We define performance in terms of the ratio of band-
width to storage capacity. There are four components to
the performance calculation: raw performance, replica-
tion, scheduling, and oversubscription. The raw perfor-
mance is the network bandwidth divided by the disk ca-
pacity, without accounting for replication, erasure cod-
ing, scheduling, or oversubscription.

Replication consumes both bandwidth and storage ca-
pacity. Using 5:2 erasure coding, for each page of data,
half a page is stored in each of five hosts. This means
we can sell only 40% of the raw storage capacity. The
network bandwidth calculation is slightly different for
writes and reads. For writes, each page must be received
by 5 different storage hosts running Paxos. That data is

10

erasure-coded by each host then written to disk. Thus,
for writes, replication reduces the raw network band-
width by a factor of 5.

For reads we do a little better. To read a page we col-
lect all five erasure-coded copies, each of which is half
a page and reconstruct the data using two of the copies.
We could probably improve this further by collecting
only two of the copies, but for now our algorithm col-
lects all five copies. So for reads, replication reduces the
bandwidth by a factor of 5/2.

Scheduling further reduces the bandwidth, but has a
negligible effect on storage capacity. Queueing theory
tells us that trying to run a system over about 70% uti-
lization will result in unbounded latencies. We don’t do
quite that well. We find that we can run our system at
about 1/3 of peak theoretical performance without af-
fecting latency. This factor of 3 is our scheduling over-
head.

Since not all the customers are presenting their peak
load at the same time, we can sell the same performance
several times, a practice known as oversubscription. In
our experience, we can oversubscribe performance by
about a factor of 5.

The units of performance simplify from MB/s/TB to
s−1, so 100 MB/s/TB is one overwrite per 10000 s.

For input-outputs per second (IO/s) we convert band-
width to IOPS by assuming that most IOs are operations
on 32 KiB pages, so we provide 3000 IO/s/TB. The
cost of other IOs can be expressed in terms of reads: A
write costs 2.5 reads, a file creation costs 6 reads, an
empty-file deletion costs 8 reads, and a file renaming
costs about 10 reads.

This performance model appears to work well on ev-
ery parallel workload we have seen. To test this model,
we measured how much bandwidth a relatively small
test fleet can provide. (We aren’t allowed to do these
sorts of experiments on the big production fleets.) We
measured on multiple clients, where each client has its
own mount target on its own Orca. This fleet has 41
storage instances each with a 10 Gbit/s VNIC for a to-
tal raw performance of 51.25 GB/s. After replication
that’s 10.25 GB/s of salable bandwidth. Dividing by 3
to account for scheduling overhead is 3.4 GB/s. Those
machines provide a total of 200 TB of salable storage,
for a ratio of 17 MB/s/TB. According to our model,
with 5-fold oversubscription, this fleet should promise
customers 85 MB/s/TB.

Figure 8 shows measured bandwidth. The variance
was small so we measured only 6 runs at each size. The
measured performance is as follows. When writing into
an empty file, block allocation consumes some time,
and a single client can get about 434 MB/s, whereas
12 clients can get about 2.0 GB/s. When writing into
an existing file, avoiding block allocation overhead, the

1

2

3

0 2 4.7 5.8 8 10 12

C
·0
.70

GB/
s

C ·
0.5

2GB/
s

3.31 GB/s
2.98 GB/s

S0.52, 2.98(C)

S0.70, 3.31(C)

B
an

dw
id

th
(G

B
/s

)

Number of clients, C

Figure 8: Measured bandwidth. The X-axis is the num-
ber of NFS clients. The Y-axis is the cumulative band-
width achieved. The crosses (in black) show measured
performance writing into a preallocated file. The x’s
(in blue) show measured performance including block
allocation. The functions S are the curves fit to a
simple-speedup model, with the corresponding linear-
speedup shown as lines passing through the origin and
the asymptotic speedups shown as horizontal lines. The
number of clients at the intercepts are also shown.

performance is about 536 MB/s and 2.4 GB/s for 1 and
12 clients respectively.

We hypothesized that we could model this data as a
simple-speedup curve [9] (a variant of Amdahl’s law or
of Brent and Graham’s Theorem [5,12,27]). In a simple-
speedup scenario, as we increase the number of clients,
we see a linear speedup which eventually flattens out to
give an asymptotic speedup. The curve is parameterized
by two numbers l and a. The first value, l, is the linear-
speedup slope which applies when the number of clients
C is small where the performance will be l ·C. The sec-
ond value, a, is the asymptotic speed, and indicates the
performance for large numbers of clients. The simple
speedup curve,

Sl,a(C) = 1/(1/lC+1/a),

is simply half the harmonic mean of the linear-speedup
curve lC and the asymptotic speed a.

We fitted of our data to the simple-speedup model and
plotted the resulting curves in Figure 8. The asymptotic
standard error for the curve fit is less than 1.7%. Visu-
ally, the curves fit the data surprisingly well.

We can interpret these curves as follows: When writ-
ing to an empty file (which includes block allocation), a
few clients can each achieve about 0.52 GB/s, and many
clients can achieve a total of 2.98 GB/s. The cutover be-
tween “few” and “many” is about 6 clients for this fleet.
When writing to a preallocated file, a few clients can
each achieve 0.70 GB/s, and many clients can achieve

11

a total of 3.31 GB/s, which is close to our estimate
of 3.4 GB/s. The intercept of the speedup curve lines
tells us the half-power points, where half the peak ca-
pacity is consumed: 4.7 clients consume half of the
fleet’s allocate-and-write capacity, and 5.8 clients con-
sume half of the write-without-allocation capacity.

Low latency is hard to achieve in a replicated dis-
tributed system. Latency is the elapsed time from an
NFS client’s request to response in an otherwise un-
loaded system. For serial workloads, latency can dom-
inate performance. For example, when running over
NFS, the tar program creates files one at a time, wait-
ing for an acknowledgment that each file exists on sta-
ble storage before creating the next file. After looking at
various benchmarks, we concluded that we should sim-
ply measure tar’s runtime on a well-known tarball such
as the Linux 4.19.2 source code distribution, which is
839 MB and contains 65825 objects. Untarring Linux
onto local NVMe device takes about 10 s. The same
NVMe served over NFS finishes in about 2.5 minutes.
FSS finishes in about 10 minutes. Amazon’s EFS, which
replicates across a metropolitan region, finishes in about
an hour. According to this limited experiment, NFS
costs a factor of 15, replication within a datacenter costs
another factor of 4, and synchronous replication over
metropolitan-scale distances costs another factor of 6.
Achieving local-filesystem performance in a replicated
distributed fault-tolerant filesystem appears ... difficult.

10 Related Work

MPSC is a variation of load-link/store-conditional [41],
and seems less susceptible to the ABA problem (in
which the same location is read twice and has the same
value for both reads, tricking the user into thinking that
no transaction has modified the location in the mean-
while) than compare-and-swap [20,21,33]. Version tag-
ging and the ABA problem appeared in [38, p. A-44].

Sinfonia has many similarities to our system. Sin-
fonia minitransactions [1] are similar to MPSC. Sin-
fonia uses uses primary-copy replication [14] and can
suffer from the split-brain problem, where both primary
and replica become active and lose consistency [19]. To
avoid split-brain, Sinfonia remotely turns off power to
failed machines, but that’s just another protocol which
can, e.g., suffer from delayed packets, and doesn’t solve
the problem. We employ Paxos [44], which is a correct
distributed consensus algorithm.

Many filesystems have stored at least some their
metadata in B-trees [8, 22, 39, 53, 63, 66, 67] and some
have gone further, storing both metadata and data in a
B-tree or other key-value store [18, 40, 64, 74, 75]. Our
B-tree usage is fairly conventional in this regard, except
that we store many filesystems in a single B-tree.

ZFS and HDFS [30,69,70,72] support multiple block
sizes in one file. Block suballocation and tail merging
filesystems [3,63,66] are special cases of this approach.

Some filesystems avoid using Paxos on every opera-
tion. For example, Ceph [42] uses Paxos to run its mon-
itors, but replicates data asynchronously. Ceph’s crash
consistency can result in replicas that are not consis-
tent with each other. Some systems (e.g., [23, 24, 52])
use other failover schemes that have not been proved
correct. Some filesystems store all metadata in mem-
ory [24, 31, 36, 42, 57], resulting in fast metadata access
until the metadata gets too big to fit in RAM. We go to
disk on every operation, resulting in no scaling limits.

11 Conclusion

History: The team started with Frigo and Kuszmaul,
and the first code commit was on 2016-07-04. Paxos
and DASD were implemented by the end of July 2016,
and the B-tree was working by November 2016. San-
dler joined and started Orca implementation on 2016-
08-03. Mazzola Paluska joined on 2016-09-15 and im-
plemented the filesystem schema in the B-tree. The
team grew to about a dozen people in January 2017,
and is about two dozen people in spring 2019. Control-
plane work started in Spring 2017. Limited availability
was launched on 2017-07-01, less than one year after
first commit (but without a control plane — all configu-
ration was done manually). General availability started
2018-01-29. As of Spring 2019, FSS hosts over 10,000
filesystems containing several petabytes of paid cus-
tomer data and is growing at an annualized rate of 8-
to 60-fold per year (there’s some seasonal variation).

Acknowledgments: In addition to the authors, the
team that built and operates FSS has included: the
data-plane team of Yonatan (Yoni) Fogel, Michael
Frasca, Stephen Fridella, Jan-Willem Maessen, and
Chris Provenzano; the control-plane team of Vikram
Bisht, Bob Naugle, Michael Chen, Ligia Connolly,
Yi Fang, Cheyenne T. Greatorex, Alex Goncharov,
David Hwang, Lokesh Jain, Uday Joshi, John Mc-
Clain, Dan Nussbaum, Ilya Usvyatsky, Mahalakshmi
Venkataraman, Viktor Voloboi, Will Walker, Tim Wat-
son, Hualiang Xu, and Zongcheng Yang; the product-
and program-management team of Ed Beauvais, Mona
Khabazan, and Sandeep Nandkeolyar; solutions ar-
chitect Vinoth Krishnamurthy; and the engineering-
management team of Thomas (Vinod) Johnson, Alan
Mullendore, Stephen Lewin-Berlin, and Rajagopal Sub-
ramaniyan. Heidi Peabody provided administrative as-
sistance. We further rely on the many hundreds of peo-
ple who run the rest of Oracle Cloud Infrastructure.

12

References

[1] Marcos K. Aguilera, Arif Merchant, Mehul Shah,
Alistair Veitch, and Christos Karamoanolis.
Sinfonia: A new paradigm for building scalable
distributed systems. ACM Transactions on
Computer Systems (TOCS), 27(3), November
2009. doi:10.1145/1629087.1629088.

[2] Alibaba elastic block storage. Viewed
2018-09-26.
https://www.alibabacloud.com/help/doc-
detail/25383.htm.

[3] Hervey Allen. Introduction to FreeBSD additional
topics. In PacNOG I Workshop, Nadi, Fiji,
20 June 2005.

[4] Amazon elastic block store. Viewed 2018-09-26.
https://aws.amazon.com/ebs/.

[5] G. M. Amdahl. The validity of the single
processor approach to achieving large scale
computing capabilities. In AFIPS Conference
Proceedings, volume 30, 1967.

[6] Apache Software Foundation. Zookeeper
internals, December 2009.
https://zookeeper.apache.org/doc/r3.1.
2/zookeeperInternals.html.

[7] Rudolf Bayer and Edward M. McCreight.
Organization and maintenance of large ordered
indexes. Acta Informatica, 1(3):173–189,
February 1972.
doi:10.1145/1734663.1734671.

[8] Steve Best and Dave Kleikamp. JFS layout. IBM
Developerworks, May 2000.
http://jfs.sourceforge.net/project/pub/
jfslayout.pdf.

[9] Robert D. Blumofe, Christopher F. Joerg,
Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: An
efficient multithreaded runtime system. Journal of
Parallel and Distributed Computing, 37(1):55–69,
August 25 1996. (An early version appeared in
the Proceedings of the Fifth ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming (PPoPP ’95), pages 207–216, Santa
Barbara, California, July 1995.).

[10] Hans-J. Boehm. Transactional memory should be
an implementation technique, not a programming
interface. In Proceedings of the First USENIX
Conference on Hot Topics in Parallelism

(HotPar’09), pages 15:1–15:6, Berkeley, CA,
30–31 March 2009. https://www.usenix.org/
legacy/events/hotpar09/tech/full_
papers/boehm/boehm_html/index.html.

[11] William J. Bolosky, Dexter Bradshaw,
Randolph B. Haagens, Norbert P. Kusters, and
Peng Li. Paxos replicated state machines at the
basis of a high-performance data store. In
Proceedings of the Eighth USENIX Conference on
Networked Systems Design and Implementation,
pages 141–154, Boston, MA, USA,
30 March–1 April 2011.
http://static.usenix.org/event/nsdi11/
tech/full_papers/Bolosky.pdf.

[12] Richard P. Brent. The parallel evaluation of
general arithmetic expressions. Journal of the
ACM, 21(2):201–206, April 1974.

[13] Gerth Stølting Brodal, Konstantinos Tsakalidis,
Spyros Sioutas, and Kostas Tsichlas. Fully
persistent b-trees. In Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA’12), pages 602–614,
Kyoto, Japan, 17–19 January 2012.
doi:10.1137/1.9781611973099.51.

[14] Navin Budhiraja, Keith Marzullo, Fred B.
Schneider, and Sam Toueg. The primary-backup
approach. In Distributed Systems, chapter 8,
pages 199–216. ACM Press/Addison-Wesley,
New York, NY, USA, second edition, 1993.

[15] Brent Callaghan, Brian Pawlowski, and Peter
Staubach. NFS version 3 protocol specification.
IETF RFC 1813, June 1995.
https://www.ietf.org/rfc/rfc1813.

[16] Călin Casçaval, Colin Blundell, Maged Michael,
Harold W. Cain, Peng Wu, Stefanie Chiras, and
Siddhartha Chatterjee. Software transactional
memory: Why is it only a research toy. ACM
Queue, 6(5), September 2008.
doi:10.1145/1454456.1454466.

[17] Tushar D. Chandra, Robert Griesemer, and Joshua
Redstone. Paxos made live: an engineering
perspective. In Proceedings of the Twenty-Sixth
Annual ACM Symposium on Principles of
Distributed Computing (PODC’07), pages
398–407, Portland, OR, USA, 12–15 August
2007. doi:10.1145/1281100.1281103.

[18] Alexander Conway, Ainesh Bakshi, Yizheng Jiao,
Yang Zhan, Michael A. Bender, William Jannen,
Rob Johnson, Bradley C. Kuszmaul, Donald E.

13

http://dx.doi.org/10.1145/1629087.1629088
https://www.alibabacloud.com/help/doc-detail/25383.htm
https://www.alibabacloud.com/help/doc-detail/25383.htm
https://aws.amazon.com/ebs/
https://zookeeper.apache.org/doc/r3.1.2/zookeeperInternals.html
https://zookeeper.apache.org/doc/r3.1.2/zookeeperInternals.html
http://dx.doi.org/10.1145/1734663.1734671
http://jfs.sourceforge.net/project/pub/jfslayout.pdf
http://jfs.sourceforge.net/project/pub/jfslayout.pdf
https://www.usenix.org/legacy/events/hotpar09/tech/full_papers/boehm/boehm_html/index.html
https://www.usenix.org/legacy/events/hotpar09/tech/full_papers/boehm/boehm_html/index.html
https://www.usenix.org/legacy/events/hotpar09/tech/full_papers/boehm/boehm_html/index.html
http://static.usenix.org/event/nsdi11/tech/full_papers/Bolosky.pdf
http://static.usenix.org/event/nsdi11/tech/full_papers/Bolosky.pdf
http://dx.doi.org/10.1137/1.9781611973099.51
https://www.ietf.org/rfc/rfc1813
http://dx.doi.org/10.1145/1454456.1454466
http://dx.doi.org/10.1145/1281100.1281103

Porter, Jun Yuan, and Martin Farach-Colton. File
systems fated for senescence? Nonsense, says
science! In Proceedings of the 15th USENIX
Conference on File and Storage Technologies
(FAST’17), pages 45–58, 27 February–2 March
2017. https://www.usenix.org/conference/
fast17/technical-
sessions/presentation/conway.

[19] Susan B. Davidson, Hector Garcia-Molina, and
Dale Skeen. Consistency in partitioned network.
Computing Surveys, 17(3):341–370, September
1985. doi:10.1145/5505.5508.

[20] David L. Detlefs, Christine H. Flood,
Alexander T. Garthwaite, Paul A. Martin, Nir N.
Shavit, and Guy L. Steele Jr. Even better
DCAS-based concurrented deques. In
Proceedings of the 14th International Conference
on Distributed Computing (DISC’00), pages
59–73, 4–6 October 2000.

[21] David L. Detlefs, Paul A. Martin, Mark Moir, and
Guy L. Steele Jr. Lock-free reference counting.
Distributed Computing, 15(4):255–271,
December 2002. Special Issue: Selected papers
from PODC’01.
doi:10.1017/s00446-002-0079-z.

[22] Matthew Dillon. The hammer filesystem, 21 June
2008. https://www.dragonflybsd.org/
hammer/hammer.pdf.

[23] Mark Fasheh. OCFS2: The oracle clustered file
system version 2. In Proceedings of the 2006
Linux Symposium, pages 289–302, 2006.
https://oss.oracle.com/projects/ocfs2/
dist/documentation/fasheh.pdf.

[24] GlusterFS. http://www.gluster.org.

[25] Google persistent disk. Viewed 2018-09-26.
https://cloud.google.com/persistent-
disk/.

[26] Goetz Graefe. A survey of B-tree locking
techniques. ACM Transactions on Database
Systems, 35(3), July 2010. Article No. 16.
doi:10.1145/1806907.1806908.

[27] R. L. Graham. Bounds on multiprocessing timing
anomalies. SIAM Journal on Applied
Mathematics, 17(2):416–429, March 1969.

[28] Jim Gray and Andreas Reuter. Transaction
Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.

[29] Jim N. Gray. Notes on data base operating
systems. In Operating Systems—An Advanced
Course, volume 60 of Lecture Notes in Computer
Science, chapter 3. Springer-Verlag, 1978.

[30] Add support for variable length block. HDFS
Ticket, July 2012. https://issues.apache.
org/jira/browse/HDFS-3689.

[31] Hdfs architecture, 2013.
http://hadoop.apache.org/docs/current/
hadoop-project-dist/hadoop-
hdfs/HdfsDesign.html#Large_Data_Sets.

[32] M. Herlihy and J. E. Moss. Transactional
memory: Architectural support for lock-free data
structures. In Proceedings of the Twentieth
Annual International Symposium on Computer
Architecture (ISCA’93), pages 289–300, San
Diego, CA, USA, 16–19 May 1993.
doi:10.1145/173682.165164.

[33] Maurice Herlihy. Wait-free synchronizatoin.
ACM Transactions on Programming Languages
and Systems (TOPLAS)), 11(1):124–149, January
1991. doi:10.1145/114005.102808.

[34] Maurice P. Herlihy and Jeannette M. Wing.
Linearizability: A correctness condition for
concurrent objects. ACM Transactions on
Programming Languages and Systems
(TOPLAS)), 12(3):463–492, July 1990.
doi:10.1145/78969.78972.

[35] Dave Hitz, James Lau, and Michael Malcolm.
File system design for an NFS file server
appliance. In Proceedings of the USENIX Winter
1994 Technical Conference, pages 19–19,
17–21 January 1994.
http://usenix.org/publications/library/
proceedings/sf94/full_papers/hitz.a.

[36] Valentin Höbel. LizardFS: Software-defined
storage as it should be, 27 April 2016. In German.
https://www.golem.de/news/lizardfs-
software-defined-storage-wie-es-sein-
soll-1604-119518.html.

[37] IBM. Data File Handbook, March 1966.
C20-1638-1. http://www.bitsavers.org/
pdf/ibm/generalInfo/C20-1638-
1_Data_File_Handbook_Mar66.pdf.

[38] IBM. IBM System/370 Extended
Architecture—Principles of Operation, March
1983. Publication number SA22-7085-0.
https://archive.org/details/bitsavers_

14

https://www.usenix.org/conference/fast17/technical-sessions/presentation/conway
https://www.usenix.org/conference/fast17/technical-sessions/presentation/conway
https://www.usenix.org/conference/fast17/technical-sessions/presentation/conway
http://dx.doi.org/10.1145/5505.5508
http://dx.doi.org/10.1017/s00446-002-0079-z
https://www.dragonflybsd.org/hammer/hammer.pdf
https://www.dragonflybsd.org/hammer/hammer.pdf
https://oss.oracle.com/projects/ocfs2/dist/documentation/fasheh.pdf
https://oss.oracle.com/projects/ocfs2/dist/documentation/fasheh.pdf
http://www.gluster.org
https://cloud.google.com/persistent-disk/
https://cloud.google.com/persistent-disk/
http://dx.doi.org/10.1145/1806907.1806908
https://issues.apache.org/jira/browse/HDFS-3689
https://issues.apache.org/jira/browse/HDFS-3689
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html#Large_Data_Sets
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html#Large_Data_Sets
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html#Large_Data_Sets
http://dx.doi.org/10.1145/173682.165164
http://dx.doi.org/10.1145/114005.102808
http://dx.doi.org/10.1145/78969.78972
http://usenix.org/publications/library/proceedings/sf94/full_papers/hitz.a
http://usenix.org/publications/library/proceedings/sf94/full_papers/hitz.a
https://www.golem.de/news/lizardfs-software-defined-storage-wie-es-sein-soll-1604-119518.html
https://www.golem.de/news/lizardfs-software-defined-storage-wie-es-sein-soll-1604-119518.html
https://www.golem.de/news/lizardfs-software-defined-storage-wie-es-sein-soll-1604-119518.html
http://www.bitsavers.org/pdf/ibm/generalInfo/C20-1638-1_Data_File_Handbook_Mar66.pdf
http://www.bitsavers.org/pdf/ibm/generalInfo/C20-1638-1_Data_File_Handbook_Mar66.pdf
http://www.bitsavers.org/pdf/ibm/generalInfo/C20-1638-1_Data_File_Handbook_Mar66.pdf
https://archive.org/details/bitsavers_ibm370prinrinciplesofOperationMar83_40542805

ibm370prinrinciplesofOperationMar83_
40542805.

[39] Apple Inc. Hfs plus volume format. Technical
Note TN1150, Apple Developer Connection,
5 March 2004.
https://developer.apple.com/library/
archive/technotes/tn/tn1150.html.

[40] William Jannen, Jun Yuan, Yang Zhan, Amogh
Akshintala, John Esmet, Yizheng Jiao, Ankur
Mittal, Prashant Pandey, Phaneendra Reddy, Leif
Walsh, Michael Bender, Martin Farach-Colton,
Rob Johnson, Bradley C. Kuszmaul, and
Donald E. Porter. BetrFS: A write-optimization in
a kernel file system. ACM Transactions on
Storage (TOS), 11(4), November 2015.
doi:10.1145/2798729.

[41] Eric H. Jensen, Gary W. Hagensen, and Jeffrey M.
Broughton. A new approach to exclusive data
access in shared memory multiprocessors.
Technical Report UCRL-97663, Lawrence
Livermore National Laboratory, Livermore,
California, November 1987. https://e-
reports-ext.llnl.gov/pdf/212157.pdf.

[42] M. Tim Jones. Ceph: A Linux petabyte-scale
distributed file system, 4 June 2004.
https://www.ibm.com/developerworks/
linux/library/l-ceph/index.html.

[43] Sakis Kasampalis. Copy on write based file
systems performance analysis and
implementation. Master’s thesis, Department of
Informatics, The Technical University of
Denmark, October 2010.
http://sakisk.me/files/copy-on-write-
based-file-systems.pdf.

[44] Leslie Lamport. The part-time parliament. ACM
Transactions on Computer Systems (TOCS),
16(2):133–169, May 1998.
doi:10.1145/279227.279229.

[45] Leslie Lamport. Paxos made simple. ACM
SIGACT News (Distributed Computing Column),
32(4 (Whole Number 121)):51–58, December
2001. https://www.microsoft.com/en-
us/research/publication/paxos-made-
simple/.

[46] Butler Lampson. Atomic transactions. In
Distributed Systems—Architecture and
Implementation, volume 100. Springer Verlag,
1980.

[47] Philip L. Lehman and S. Bing Yao. Efficient
locking for concurrent operations on B-trees.
ACM Transactions on Database Systems,
6(4):650–670, December 1981.
doi:10.1145/319628.319663.

[48] Yossi Lev, Mark Moir, and Dan Nussbaum.
PhTM: Phased transactional memory. In The
Second ACM SIGPLAN Workshop on
Transactional Computing, Portland, OR, USA,
16 August 2007.

[49] A. J. Lewis. LVM howto, 2002.
http://tldp.org/HOWTO/LVM-HOWTO/.

[50] Bruce G. Lindsay. Single and multi-site recovery
facilities. In I. W. Draffan and F. Poole, editors,
Distributed Data Bases, chapter 10. Cambridge
University Press, 1980. Also available as [51].

[51] Bruce G. Lindsay, Patricia G. Selinger, Cesare A.
Galtieri, James N. Gray, Raymond A. Lorie,
Thomas G. Price, Franco Putzolu, Irving L.
Traiger, and Bradford W. Wade. Notes on
distributed databases. Research Report RJ2571,
IBM Research Laboratory, San Jose, California,
USA, July 1979. http://domino.research.
ibm.com/library/cyberdig.nsf/papers/
A776EC17FC2FCE73852579F100578964/$File/
RJ2571.pdf.

[52] The Lustre file system. lustre.org.

[53] Avantika Mathur, MingMing Cao, Suparna
Bhattacharya, Andreas Dilger, Alex Tomas, and
Laurent Vivier. The new ext4 filesystem: Current
status and future plans. In Proceedings of the
Linux Symposium, Ottawa, Ontario, Canada,
27–30 June 2007.

[54] Microsoft azure blob storage. Viewed
2018-09-26.
https://azure.microsoft.com/en-
us/services/storage/blobs/.

[55] Microsoft SMB Protocol and CIFS Protocol
overview, May 2018.
https://docs.microsoft.com/en-us/
windows/desktop/FileIO/microsoft-smb-
protocol-and-cifs-protocol-overview.

[56] Barton P. Miller, Louis Fredersen, and Bryan So.
An empirical study of the reliability of UNIX
utilities. Communications of the ACM (CACM),
33(12):32–44, December 1990.
doi:10.1145/96267.96279.

15

https://archive.org/details/bitsavers_ibm370prinrinciplesofOperationMar83_40542805
https://archive.org/details/bitsavers_ibm370prinrinciplesofOperationMar83_40542805
https://developer.apple.com/library/archive/technotes/tn/tn1150.html
https://developer.apple.com/library/archive/technotes/tn/tn1150.html
http://dx.doi.org/10.1145/2798729
https://e-reports-ext.llnl.gov/pdf/212157.pdf
https://e-reports-ext.llnl.gov/pdf/212157.pdf
https://www.ibm.com/developerworks/linux/library/l-ceph/index.html
https://www.ibm.com/developerworks/linux/library/l-ceph/index.html
http://sakisk.me/files/copy-on-write-based-file-systems.pdf
http://sakisk.me/files/copy-on-write-based-file-systems.pdf
http://dx.doi.org/10.1145/279227.279229
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
http://dx.doi.org/10.1145/319628.319663
http://tldp.org/HOWTO/LVM-HOWTO/
http://domino.research.ibm.com/library/cyberdig.nsf/papers/A776EC17FC2FCE73852579F100578964/$File/RJ2571.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/A776EC17FC2FCE73852579F100578964/$File/RJ2571.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/A776EC17FC2FCE73852579F100578964/$File/RJ2571.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/A776EC17FC2FCE73852579F100578964/$File/RJ2571.pdf
lustre.org
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://docs.microsoft.com/en-us/windows/desktop/FileIO/microsoft-smb-protocol-and-cifs-protocol-overview
https://docs.microsoft.com/en-us/windows/desktop/FileIO/microsoft-smb-protocol-and-cifs-protocol-overview
https://docs.microsoft.com/en-us/windows/desktop/FileIO/microsoft-smb-protocol-and-cifs-protocol-overview
http://dx.doi.org/10.1145/96267.96279

[57] MooseFS fact sheet, 2018.
https://moosefs.com/factsheet/.

[58] Brian Oki and Barbara Liskov. Viewstamped
replication: A new primary copy method to
support highly-available distributed systems. In
Proceedings of the Seventh Annual ACM
Symposium on Principles of Distributed
Computing (PODC’88), pages 8–17, Toronto,
Ontario, Canada, 15–17 August 1988.
doi:10.1145/62546.62549.

[59] Diego Ongaro and John Ousterhout. In search of
an understandable consensus algorithm. In
Proceedings of USENIX ATC’14: 2014 USENIX
Annual Technical Conference, Philadelphia, PA,
USA, 19–20 June 2014.
https://www.usenix.org/node/184041.

[60] Diego Ongaro and John Ousterhout. In search of
an understandable consensus algorithm (extended
version), 20 May 2014. Extended version of [59].
https://raft.github.io/raft.pdf.

[61] Oracle cloud infrastructure block volumes.
Viewed 2018-09-26.
https://cloud.oracle.com/en_US/storage/
block-volume/features.

[62] I. S. Reed and G. Solomon. Polynomial codes
over certain finite fields. Journal of the Society for
Industrial and Applied Mathemetics,
8(2):300–304, June 1960.
doi:10.1137/0108018.

[63] Hans T. Reiser. Reiser4, 2006. Archived from the
original on 6 July 2006. https://web.archive.
org/web/20060706032252/http:
//www.namesys.com:80/.

[64] Kai Ren and Garth Gibson. TABLEFS:
Enhancing metadata efficiency in the local file
system. In USENIX Annual Technical
Conference, pages 145–156, 2013.
https://www.usenix.org/system/files/
conference/atc13/atc13-ren.pdf.

[65] Ohad Rodeh. B-trees, shadowing, and clones.
ACM Transactions on Computational Logic,
3(4):15:1–15:27, February 2008.
doi:10.1145/1326542.1326544.

[66] Ohad Rodeh, Josef Bacik, and Chris Mason.
BTRFS: The Linux B-tree filesystem. ACM
Transactions on Storage (TOS), 9(3), August
2013. Article No. 9.
doi:10.1145/2501620.2501623.

[67] Mark Russinovich. Inside Win2K NTFS, part 1.
ITProToday, 22 October 2000.
https://www.itprotoday.com/management-
mobility/inside-win2k-ntfs-part-1.

[68] Spencer Shepler, Brent Callaghan, David
Robinson, Robert Thurlow, Carl Beame, Mike
Eisler, and David Noveck. Network File System
(NFS) version 4 protocol. IETF RFC 3530, April
2003. https://www.ietf.org/html/rfc3530.

[69] Chris Siebenmann. ZFS’s recordsize, holes in
files, and partial blocks, 27 September 2017.
Viewed 2018-08-30. https:
//utcc.utoronto.ca/˜cks/space/blog/
solaris/ZFSFilePartialAndHoleStorage.

[70] Chris Siebenmann. What ZFS gang blocks are
and why they exist, 6 January 2018. Viewed
2018-08-30. https://utcc.utoronto.ca/
˜cks/space/blog/solaris/ZFSGangBlocks.

[71] W. Ricxhard Stevens. TCP slow start, congestion
avoidance, fast retransmit and fast recovery
algorithms. IETF RFC 2001, January 1997.
https://www.ietf.org/html/rfc2001.

[72] Sun Microsystems. ZFS on-disk
specification—draft, August 2006. http:
//www.giis.co.in/Zfs_ondiskformat.pdf.

[73] Lingxiang Xiang and Michael L. Scott. Conflict
reduction in hardware transactions using advisory
locks. In Proceedings of the 27th ACM
Symposium on Parallelism in Algorithms and
Architectures (SPAA’15), pages 234–243,
Portland, OR, USA, 13–15 June 2015.
doi:10.1145/2755573.2755577.

[74] Jun Yuan, Yang Zhan, William Jannen, Prashant
Pandey, Amogh Akshintala, Kanchan Chandnani,
Pooja Deo, Zardosht Kasheff, Leif Walsh,
Michael A. Bender, Martin Farach-Colton, Rob
Johnson, Bradley C. Kuszmaul, and Donald E.
Porter. Writes wrought right, and other
adventures in file system optimization.
Transactions on Storage—Special Issue on
USENIX FAST 2016, 13(1):3:1–3:21, March
2017. doi:10.1145/3032969.

[75] Yang Zhan, Alexander Conway, Yizheng Jiao,
Eric Knorr, Michael A. Bender, Martin
Farach-Colton, William Jannen, Rob Johnson,
Donald E. Porter, and Jun Yuan. The full path to
full-path indexing. In Proceedings of the 16th
USENIX Conference on File and Storage
Technologies (FAST’18), pages 123–138,

16

https://moosefs.com/factsheet/
http://dx.doi.org/10.1145/62546.62549
https://www.usenix.org/node/184041
https://raft.github.io/raft.pdf
https://cloud.oracle.com/en_US/storage/block-volume/features
https://cloud.oracle.com/en_US/storage/block-volume/features
http://dx.doi.org/10.1137/0108018
https://web.archive.org/web/20060706032252/http://www.namesys.com:80/
https://web.archive.org/web/20060706032252/http://www.namesys.com:80/
https://web.archive.org/web/20060706032252/http://www.namesys.com:80/
https://www.usenix.org/system/files/conference/atc13/atc13-ren.pdf
https://www.usenix.org/system/files/conference/atc13/atc13-ren.pdf
http://dx.doi.org/10.1145/1326542.1326544
http://dx.doi.org/10.1145/2501620.2501623
https://www.itprotoday.com/management-mobility/inside-win2k-ntfs-part-1
https://www.itprotoday.com/management-mobility/inside-win2k-ntfs-part-1
https://www.ietf.org/html/rfc3530
https://utcc.utoronto.ca/~cks/space/blog/solaris/ZFSFilePartialAndHoleStorage
https://utcc.utoronto.ca/~cks/space/blog/solaris/ZFSFilePartialAndHoleStorage
https://utcc.utoronto.ca/~cks/space/blog/solaris/ZFSFilePartialAndHoleStorage
https://utcc.utoronto.ca/~cks/space/blog/solaris/ZFSGangBlocks
https://utcc.utoronto.ca/~cks/space/blog/solaris/ZFSGangBlocks
https://www.ietf.org/html/rfc2001
http://www.giis.co.in/Zfs_ondiskformat.pdf
http://www.giis.co.in/Zfs_ondiskformat.pdf
http://dx.doi.org/10.1145/2755573.2755577
http://dx.doi.org/10.1145/3032969

Oakland, CA, USA, 12–15 February 2018.
https://www.usenix.org/conference/
fast18/presentation/zhan.

17

https://www.usenix.org/conference/fast18/presentation/zhan
https://www.usenix.org/conference/fast18/presentation/zhan

	Introduction
	FSS Architecture
	Multi-Page Store Conditional
	A Filesystem Schema
	The B-tree
	DASD: Not Your Parent's Disk Drive
	Pipelined Paxos
	Avoiding Conflicts
	Performance
	Related Work
	Conclusion

