
Cache Oblivious Stencil Computations

Matteo Frigo and Volker Strumpen∗

IBM Austin Research Laboratory

11501 Burnet Road, Austin, TX 78758

May 25, 2005

Abstract

We present a cache oblivious algorithm for stencil com-
putations, which arise for example in finite-difference
methods. Our algorithm applies to arbitrary stencils in
n-dimensional spaces. On an “ideal cache” of size Z,
our algorithm saves a factor of Θ(Z1/n) cache misses
compared to a naive algorithm, and it exploits temporal
locality optimally throughout the entire memory hier-
archy.

1 Introduction

A stencil defines the computation of an element in
an n-dimensional spatial grid at time t as a function
of neighboring grid elements at time t − 1, . . . , t − k.
This computational pattern arises in many contexts,
including explicit finite-difference methods [5]. The
n-dimensional grid plus the time dimension span an
(n+1)-dimensional spacetime .1 Each spacetime point,
except possibly for initial and boundary values, is com-
puted by means of a computational kernel . In prac-
tical implementations of stencils, there is often no need
to store the entire spacetime; storing a bounded num-
ber of time steps per space point is sufficient. For ex-
ample, consider a 3-point stencil in 1-dimensional space
(2-dimensional spacetime): Because the computation of
a point at time t depends only upon three points at time
t−1, it is sufficient to store two time steps only. For this
important case of stencil computations with kernels that
require a bounded amount of storage per space point,
we present a cache-oblivious algorithm that exploits a
memory hierarchy optimally.

A stencil computation is a traversal of spacetime in

∗This work was supported in part by the Defense Ad-
vanced Research Projects Agency (DARPA) under contract No.
NBCH30390004.

To appear in the Proceedings of the 19th
ACM International Conference on Supercomput-
ing (ICS05).

an order that respects the data dependencies imposed
by the stencil. The simplest stencil computation ap-
plies the kernel to all spacetime points at time t before
computing any point at time t+1. On a memory hierar-
chy, if the size of the storage required for the spacetime
points of one time step exceeds the cache size Z, this
simple computation incurs a number of cache misses
proportional to p, where p is the number of spacetime
points computed. In contrast, when traversing a suffi-
ciently large rectangular region of (n + 1)-dimensional
spacetime spanning a sufficiently large time interval, our
algorithm incurs at most O(p/Z1/n) cache misses on a
machine with an ideal cache [2] of size Z. This num-
ber of cache misses matches the lower bound of Hong
and Kung [3] within a constant factor. Unlike blocked
algorithms, our algorithm is cache oblivious: it does
not contain the cache size as a parameter [2]. There-
fore, the algorithm makes optimal use of each level in
a multi-level memory hierarchy. In addition, our algo-
rithm applies to arbitrary stencils and arbitrary space
dimension n > 0.

Cache oblivious algorithms for special cases of stencil
computations have been proposed before. Bilardi and
Preparata [1] discuss cache oblivious algorithms for the
related problem of simulating large parallel machines on
smaller machines in a spacetime-efficient manner. Their
algorithms apply to 1-dimensional and 2-dimensional
spaces and do not generalize to higher dimensions. In
fact, the authors declare the 3-dimensional case, and im-
plicitly higher dimensional spaces, to be an open prob-
lem. Prokop [4] gives a cache oblivious stencil algo-
rithm for a 3-point stencil in 1-dimensional space, and
proves that the algorithm is optimal. His algorithm is
restricted to square spacetime regions, and it does not
extend to higher dimensions. We are unaware of any
previous solution of the general n-dimensional case.

We introduce a simplified cache-oblivious stencil al-
gorithm for 1-dimensional grids and a 3-point stencil in

1We emphasize that we denote the dimensionality of space
as n and the dimensionality of spacetime as n + 1. When using
the term space, we implicitly exclude the time dimension. When
we include the time dimension, we refer to spacetime.

1

void walk1(int t0, int t1, int x0, int ẋ0, int x1, int ẋ1)

{

int ∆t = t1 - t0;

if (∆t == 1) {

/* base case */

int x;
for (x = x0; x < x1; ++x)

kernel(t0, x);
} else if (∆t > 1) {

if (2 * (x1 - x0) + (ẋ1 - ẋ0) * ∆t >= 4 * ∆t) {

/* space cut */

int xm = (2 * (x0 + x1) + (2 + ẋ0 + ẋ1) * ∆t) / 4;

walk1(t0, t1, x0, ẋ0, xm, -1);

walk1(t0, t1, xm, -1, x1, ẋ1);

} else {

/* time cut */

int s = ∆t / 2;

walk1(t0, t0 + s, x0, ẋ0, x1, ẋ1);

walk1(t0 + s, t1, x0 + ẋ0 * s, ẋ0, x1 + ẋ1 * s, ẋ1);

}

}

}

Figure 1: Procedure walk1 for traversing a 2-dimensional spacetime spanned by a 1-dimensional grid and time for a 3-point
stencil.

Section 2. Then, we present our algorithm for arbitrary
stencils and n-dimensional grids in Section 3, and prove
bounds on the number of cache misses in Section 4.

2 One-dimensional Stencil Algorithm

Procedure walk1 in Fig. 1 traverses rectangular space-
time (t, x), where 0 ≤ t < T and 0 ≤ x < N . For sim-
pler illustration, we restrict this procedure to observe
the dependencies of a 3-point stencil, i.e. the procedure
visits point (t+1, x) after visiting points (t, x−1), (t, x),
and (t, x + 1). Although we are ultimately interested
in traversing rectangular spacetime regions, procedure
walk1 operates on more general trapezoidal regions such
as the one shown in Fig. 2. For integers t0, t1, x0, ẋ0, x1,
and ẋ1, we define the trapezoid T (t0, t1, x0, ẋ0, x1, ẋ1)
to be the set of integer pairs (t, x) such that t0 ≤ t < t1
and x0 + ẋ0(t − t0) ≤ x < x1 + ẋ1(t − t0). (We use
the Newtonian notation ẋ = dx/dt.) The height of the
trapezoid is ∆t = t1 − t0, and we define the width

to be the average of the lengths of the two parallel
sides, i.e. w = (x1 − x0) + (ẋ1 − ẋ0)∆t/2. The cen-

ter of the trapezoid is point (t, x), where t = (t0 + t1)/2
and x = (x0 + x1)/2 + (ẋ0 + ẋ1)∆t/4 (i.e., the average
of the four corners). The volume of the trapezoid is
the number of points in the trapezoid: Vol(T) = |T |.
We only consider well-defined trapezoids, for which

x0 x1

t0

t1

x

t
w

∆t

Figure 2: Illustration of the trapezoid T (t0, t1, x0, ẋ0, x1, ẋ1)
for ẋ0 = 1 and ẋ1 = −1. The trapezoid includes all points
in the shaded region, except for those on the top and right
edges.

these three conditions hold: t1 ≥ t0, x1 ≥ x0, and
x1 + ∆t · ẋ1 ≥ x0 + ∆t · ẋ0.

The special case T (t0, t1, x0, 0, x1, 0) denotes a rect-
angular region. In this section, we restrict the slopes

ẋ0 and ẋ1 of the edges to assume values 1, −1, or 0,
delaying the general case until Section 3.

Fig. 1 shows procedure walk1 as a recursive
C function whose parameters denote the trapezoid
T (t0, t1, x0, ẋ0, x1, ẋ1). The procedure visits all points
of the trapezoid in an order that respects the stencil de-
pendencies. Procedure walk1 decomposes the trapezoid

2

x0 x1

t1

t0

xm

x

t

T2

T1

Figure 3: Illustration of a space cut. When the space dimen-
sion is “large enough” (see text), procedure walk1 cuts the
trapezoid along the line of slope −1 through its center.

recursively into smaller trapezoids, according to the fol-
lowing rules.

Base case: If the height is 1, then the trapezoid con-
sists of the line of spacetime points (t0, x) with
x0 ≤ x < x1. The procedure visits all these points,
calling the application-specific procedure kernel.
The traversal order is not important because these
points do not depend on each other.

Space cut: If the width is at least twice the height,
then we cut the trapezoid along the line with
slope −1 through the center of the trapezoid,
cf. Fig. 3. The recursion first traverses trapezoid
T1 = T (t0, t1, x0, ẋ0, xm,−1), and then trapezoid
T2 = T (t0, t1, xm,−1, x1, ẋ1). This traversal order
is valid because no point in T1 depends upon any
point in T2.

From Fig. 3, we obtain

xm =
1

2
(x0 + x1) +

1

4
(ẋ0 + ẋ1)∆t +

1

2
∆t .

Time cut: Otherwise, we cut the trapezoid along the
horizontal line through the center, cf. Fig. 4. The
recursion first traverses trapezoid T1 = T (t0, t0 +
s, x0, ẋ0, x1, ẋ1), and then trapezoid T2 = T (t0 +
s, t1, x0 + ẋ0s, ẋ0, x1 + ẋ1s, ẋ1), where s = ∆t/2.
The order of these traversals is valid because no
point in T1 depends on any point in T2.

In the two recursive cases, even though the computa-
tion of xm or s is based on integer divisions with trun-
cation or rounding, one can prove that both T1 and T2

are well-defined and nonempty no matter how the quo-
tient is truncated or rounded. Thus, procedure walk1 is
guaranteed to terminate because it reduces the original
problem to strictly smaller subproblems.

Procedure walk1 traverses the rectangular region
T (0, T, 0, 0, N, 0) as a special case. Perhaps surpris-
ingly, the same procedure also works for cylindrical

x0

t1

t0

t

x1

x

s T1

T2

Figure 4: Illustration of a time cut : procedure walk1 cuts
the trapezoid along the horizontal line through its center.

regions in which point (t + 1, x) depends on points
(t, (x − 1) mod N), (t, x), and (t, (x + 1) mod N). To
use walk1 in this fashion, invoke it on T (0, T, 0, 1, N, 1)
and interpret all indices (modN) in the kernel. Fig. 5
illustrates how this scheme works for N = T = 10.
In the left part of the figure, we mark each spacetime
point with consecutive integers in the order in which
the point is visited. Thus, point (t, x) = (0, 0) is visited
first, point (0, 1) second, etc. The right part of the fig-
ure shows the recursively nested trapezoids produced by
walk1. Procedure walk1 traverses the spacetime region
in the black trapezoid rather than the grey spacetime
rectangle, but the traversal order is consistent with a
cylindrical stencil problem if all indices are interpreted
(modN) in the kernel.

3 Multi-dimensional Algorithm

In this section, we generalize procedure walk1 from Sec-
tion 2 in two ways. First, we relax the restriction to the
3-point stencil and allow arbitrary stencils. In partic-
ular, we allow spacetime point (t + 1, x) to depend on
all points (t, x + k), where |k| ≤ σ.2 Second, we gen-
eralize our procedure for arbitrary-dimensional space-
time. Fig. 6 shows a C implementation of the multi-
dimensional walk procedure.

We first extend procedure walk1 to work for |ẋ0| ≤ σ
and |ẋ1| ≤ σ, for an arbitrary slope σ. In the “space
cut” case, we cut along a line of slope dx/dt = −σ
through the center. This cut guarantees that no point
in the left trapezoid T1 depends upon any point in the
right trapezoid T2. Therefore, the modified algorithm
traverses spacetime in an order consistent with the sten-
cil dependencies. The expression for xm (see Fig. 3) for
arbitrary slope σ becomes

xm =
1

2
(x0 + x1) +

1

4
(ẋ0 + ẋ1)∆t +

1

2
σ∆t .

2The generalization of the stencil with respect to dependencies
of time steps t, t− 1, . . . , t − j for j > 1 follows by induction, and
by choosing slope σ = maxj(σj), where σj is the slope between
time steps t + 1 − j and t − j.

3

t\x 0 1 2 3 4 5 6 7 8 9
9 79 88 89 90 94 95 97 98 99 78
8 76 77 85 86 87 92 93 96 74 75
7 71 72 73 82 83 84 91 68 69 70
6 62 63 66 67 80 81 54 55 58 59
5 57 60 61 64 65 50 51 52 53 56
4 45 47 48 49 28 29 38 39 40 44
3 42 43 46 24 25 26 27 35 36 37
2 34 41 18 19 20 21 22 23 32 33
1 31 4 5 8 9 12 13 16 17 30
0 0 1 2 3 6 7 10 11 14 15

t

x

Figure 5: Cache-oblivious traversal of 1-dimensional spacetime for N = T = 10.

The space cut can be applied when width w ≥ 2σ∆t,
which guarantees that the two trapezoids that result
from the cut are well-defined and nonempty.

Next, we consider n-dimensional stencils, where n > 0
is the number of space dimensions (i.e., excluding time).

A n-dimensional trapezoid T (t0, t1, x
(i)
0 , ẋ

(i)
0 , x

(i)
1 , ẋ

(i)
1),

where 0 ≤ i < n, is the set of integer tuples
(t, x(0), x(1), . . . , x(n−1)) such that t0 ≤ t < t1 and

x
(i)
0 + ẋ

(i)
0 (t − t0) ≤ x(i) < x

(i)
1 + ẋ

(i)
1 (t − t0) for all

0 ≤ i < n. Informally, for each dimension i, the projec-
tion of the multi-dimensional trapezoid onto the (t, x(i))
plane looks like the 1-dimensional trapezoid in Fig. 2.
Consequently, we can apply the same recursive decom-
position that we used in the 1-dimensional case: if any
dimension i permits a space cut in the (t, x(i)) plane,
then cut space in dimension i. Otherwise, if none of
the space dimensions can be split, cut time in the same
fashion as in the 1-dimensional case.

Procedure walk in Fig. 6 implements the multi-
dimensional trapezoid by means of an array of tuples of
type C, the configuration tuple for one space dimen-
sion. Fig. 6 hides the traversal of the n-dimensional base
case in procedure basecase. We leave it as a program-
ming exercise to develop this procedure, which visits all
points of the rectangular parallelepiped at time step t0
in all space dimensions by calling application specific
procedure kernel.

4 Analysis of Cache Misses

In this section, we prove Theorem 2, which states that
procedure walk incurs O(Vol(T)/Z1/n) cache misses on
a machine with an ideal cache of size Z, provided that
the kernel operates “in-place,” that the cache is “ideal,”
and that the trapezoid is “sufficiently large.”

We say that the kernel of a stencil computation is in-

place if for some k, the kernel stores spacetime point

(t, x(0), x(1), . . . , x(n−1)) in the same memory locations
where spacetime point (t − k, x(0), x(1), . . . , x(n−1)) was
stored, destroying the old value. Our analysis only ap-
plies to in-place kernels, but this condition is true in
most practical situations3.

We use the ideal cache model from [2]. The ideal
cache is fully associative and implements an optimal re-
placement policy. While [2] allows the cache to be par-
titioned into cache lines of size L, we restrict ourselves
to the case L = 1 in this paper.

We start with a lemma that relates the volume and
the surface of an n-dimensional trapezoid.

Lemma 1 Let T be the n-dimensional trapezoid

T (t0, t1, x
(i)
0 , ẋ

(i)
0 , x

(i)
1 , ẋ

(i)
1), where 0 ≤ i < n. Let T be

well-defined, wi be the width of the trapezoid in dimen-
sion i, and let m = min(∆t, w0, w1, . . . , wn−1)/2. Then,
there are O((1 + n)Vol(T)/m) points on the surface of
the trapezoid.

Proof: The volume of the trapezoid is the sum for all
time slices of the number of points in the (rectangular)
slice:

Vol(T) =
∑

−∆t/2≤t<∆t/2

∏

0≤i<n

(wi + ϑit) ,

where ϑi = ẋ
(i)
1 − ẋ

(i)
0 . Define the auxiliary function

V (s) as:

V (s) =
∑

−(∆t/2)−s≤t<(∆t/2)+s

∏

0≤i<n

(wi+2s+ϑit) . (1)

Then, we have Vol(T) = V (0), and the number of points
on the surface ∂Vol(T) is at most V (1) − V (0). We

3If the kernel stores the whole spacetime into distinct memory
locations, then each point in the trapezoid must obviously incur
a cache miss and no savings are possible.

4

typedef struct { int x0, ẋ0, x1, ẋ1 } C;

void walk(int t0, int t1, C c[n])
{

int ∆t = t1 - t0;

if (∆t == 1) {

basecase(t0, c);

} else if (∆t > 1) {

C *p;

/* for all dimensions, try to cut space */

for (p = c; p < c + n; ++p) {

int x0 = p->x0, x1 = p->x1, ẋ0 = p->ẋ0, ẋ1 = p->ẋ1;

if (2 * (x1 - x0) + (ẋ1 - ẋ0) * ∆t >= 4 * σ * ∆t) {

/* cut space dimension *p */

C save = *p; /* save configuration *p */

int xm = (2 * (x0 + x1) + (2 * σ + ẋ0 + ẋ1) * ∆t) / 4;

*p = (C){ x0, ẋ0, xm, -σ }; walk(t0, t1, c);

*p = (C){ xm, -σ, x1, ẋ1 }; walk(t0, t1, c);

p = save; / restore configuration *p */

return;

}

}

{

/* because no space cut is possible, cut time */

int s = ∆t / 2;

C newc[n];
int i;

walk(t0, t0 + s, c);

for (i = 0; i < n; ++i) {

newc[i] = (C){ c[i].x0 + c[i].ẋ0 * s, c[i].ẋ0,

c[i].x1 + c[i].ẋ1 * s, c[i].ẋ1 };

}

walk(t0 + s, t1, newc);

}

}

}

Figure 6: A C99 implementation of the multi-dimensional walk procedure. The code assumes that n is a compile-time constant.
The base case and the definition of the slope σ are not shown.

5

approximate the sum in Eq. (1) with the integral

V (s) =

∫ (∆t/2)+s

−(∆t/2)−s

∏

0≤i<n

(wi + 2s + ϑit) dt

and the surface ∂Vol(T) with the derivative V ′(0). Af-
ter the substitution t = (m + s)r, we obtain

V (s) =

∫ g(s)

−g(s)

(m + s)f(s, r) dr ,

where g(s) = ((∆t/2) + s)/(m + s) and

f(s, r) =
∏

0≤i<n

(wi + (2 + ϑir)s + ϑirm) .

The derivative V ′(0) is

V ′(0) = g′(0) · m ·
(

f(0, g(0)) + f(0,−g(0))
)

+

∫ g(0)

−g(0)

(

f(0, r) + m ·
df(s, r)

ds

∣

∣

∣

∣

s=0

)

dr .

(2)

Observe that

m·
df(s, r)

ds

∣

∣

∣

∣

s=0

= f(0, r)·
∑

0≤j<n

2m + ϑjrm

wj + ϑjrm
≤ nf(0, r) ,

(3)
where the inequality holds because (2m + ϑjrm)/(wj +
ϑjrm) ≤ 1, which holds because we have 2m ≤ wj by
definition of m, and because we have wj + ϑjrm ≥ 0
since the trapezoid is well-defined.

Further observe that, because m ≤ ∆t/2 holds by
definition of m, we have that g′(s) = (m−∆t/2)/(m +
s)2 ≤ 0. Because the trapezoid is well-defined, we have
f(s, r) ≥ 0 and m ≥ 0. Therefore, we obtain

g′(0) · m ·
(

f(0, g(0)) + f(0,−g(0))
)

≤ 0 . (4)

By substituting Eqs. (3) and (4) into Eq. (2), we ob-
tain the result V ′(0) ≤ (1 + n)V (0)/m, and the lemma
follows. Q.E.D.

Theorem 2 Let T be the well-defined n-dimensional
trapezoid T (t0, t1, x

(i)
0 , ẋ

(i)
0 , x

(i)
1 , ẋ

(i)
1). Let procedure

walk traverse T and execute a kernel in-place on a
machine with an ideal cache of size Z. Assume that
∆t = Ω(Z1/n) and that wi = Ω(Z1/n) for all i, where
wi is the width of the trapezoid in dimension i. Then,
procedure walk incurs at most O(Vol(T)/Z1/n) cache
misses.

Proof: (Sketch) Procedure walk recursively cuts a large
trapezoid into smaller trapezoids. During this recursion,
a sub-trapezoid S eventually becomes so small that it

has Θ(Z) points on its surface. Because the problem
is in-place, all spacetime points in S can be computed
with O(∂Vol(S)) cache misses, since the cache is ideal
by assumption.

If a space dimension i exists for which wi ≥ 2σ∆t,
then walk cuts space dimension i, and otherwise it
cuts time. Consequently, for sub-trapezoid S we have
∆t = Θ(wi) for all i. Therefore, we have ∆t =
Ω((∂Vol(S))1/n) = Ω(Z1/n). From Lemma 1, we ob-
tain ∂Vol(S) = O(Vol(S)/∆t). Thus, the number of
cache misses for executing S is O(Vol(S)/Z1/n). The
theorem follows by adding the cache misses incurred by
all such sub-trapezoids. Q.E.D.

References

[1] Gianfranco Bilardi and Franco P. Preparata. Upper
bounds to processor-time tradeoffs under bounded-speed
message propagation. In SPAA ’95: Proceedings of the
seventh annual ACM symposium on Parallel algorithms
and architectures, pages 185–194. ACM Press, 1995.

[2] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and
Sridhar Ramachandran. Cache-oblivious algorithms. In
Proc. 40th Ann. Symp. Foundations of Computer Science
(FOCS ’99), New York, USA, October 1999.

[3] Jia-Wei Hong and H. T. Kung. I/O complexity: the
red-blue pebbling game. In Proc. Thirteenth Ann. ACM
Symp. Theory of Computing, pages 326–333, Milwaukee,
1981.

[4] Harald Prokop. Cache-oblivious algorithms. Master’s
thesis, Massachusetts Inst. of Technology, June 1999.

[5] G. D. Smith. Numerical Solution of Partial Differential
Equations: Finite Difference Methods. Oxford University
Press, 3rd edition, 1985.

6

