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ABSTRACT
This paper introduceshyperobjects, a linguistic mechanism that al-
lows different branches of a multithreaded program to maintain co-
ordinated local views of the same nonlocal variable. We have iden-
tified three kinds of hyperobjects that seem to be useful —reduc-
ers, holders, andsplitters— and we have implemented reducers
and holders in Cilk++, a set of extensions to the C++ programming
language that enables multicore programming in the style of MIT
Cilk. We analyze a randomized locking methodology for reduc-
ers and show that a work-stealing scheduler can support reducers
without incurring significant overhead.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques—Concurrent pro-
gramming; D.3.3 [Software]: Language Constructs and Features—
Concurrent programming structures.

General Terms
Algorithms, Languages, Theory.

1 INTRODUCTION
Many serial programs usenonlocal variables— variables that are
bound outside of the scope of the function, method, or class in
which they are used. If a variable is bound outside of all local
scopes, it is aglobal variable. Nonlocal variables have long been
considered a problematic programming practice [22], but program-
mers often find them convenient to use, because they can be ac-
cessed at the leaves of a computation without the overhead and
complexity of passing them as parameters through all the internal
nodes. Thus, nonlocal variables have persisted in serial program-
ming.

In the world of parallel computing, nonlocal variables may in-
hibit otherwise independent “strands” of a multithreaded program
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1 bool has_property(Node *);
2 std::list <Node *> output_list;
3 // ...
4 void walk(Node *x)
5 {
6 if (x) {
7 if (has_property(x))
8 output_list.push_back(x);
9 walk(x->left);

10 walk(x->right);
11 }
12 }

Figure 1: C++ code to create a list of all the nodes in a binary tree that
satisfy a given property.

from operating in parallel, because they introduce “race condi-
tions.” We define astrand to be a sequence of executed instruc-
tions containing no parallel control. Adeterminacy race[7] (also
called ageneral race[18]) exists if logically parallel strands access
the same shared location, and at least one of the strands modifies
the value in the location. A determinacy race is often a bug, be-
cause the program may exhibit unexpected, nondeterministic be-
havior depending on how the strands are scheduled. Serial code
containing nonlocal variables is particularly prone to the introduc-
tion of determinacy races when the code is parallelized.

As an example of how a nonlocal variable can introduce a deter-
minacy race, consider the problem of walking a binary tree to make
a list of which nodes satisfy a given property. A C++ code to solve
the problem is abstracted in Figure 1. If the nodex being visited
is nonnull, the code checks whetherx has the desired property in
line 7, and if so, it appendsx to the list stored in the global variable
output_list in line 8. Then, it recursively visits the left and right
children ofx in lines 9 and 10.

Figure 2 illustrates a straightforward parallelization of this code
in Cilk++, a set of simple extensions to the C++ programming
language that enables multicore programming in the style of the
MIT Cilk multithreaded programming language [8]. The keyword
cilk_spawn preceding a function invocation causes the currently
executing “parent” function to call the specified function just like a
normal function call. Unlike a normal function call, however, the
parent may continue executing in parallel with its spawned child,
instead of waiting for the child to complete as with a normal func-
tion call. A cilk_spawn keyword does not say that the parent
must continue executing in parallel with its child, only that itmay.
(The Cilk++ runtime system makes these scheduling decisions in
a provably efficient fashion, leaving the programmer to specify the
potential for parallelism.) In line 9 of the figure, thewalk function
is spawned recursively on the left child, while the parent may con-
tinue on to execute an ordinary recursive call ofwalk in line 10.
Thecilk_sync statement in line 11 indicates that control should
not pass this point until the spawned child returns. As the recursion
unfolds, the running program generates a tree of parallel execution
that follows the structure of the binary tree. Unfortunately, this



1 bool has_property(Node *);
2 std::list <Node *> output_list;
3 // ...
4 void walk(Node *x)
5 {
6 if (x) {
7 if (has_property(x))
8 output_list.push_back(x);
9 cilk_spawn walk(x->left);

10 walk(x->right);
11 cilk_sync;
12 }
13 }

Figure 2: A naive Cilk++ parallelization of the code in Figure 1. This code
has a determinacy race in line 8.

1 bool has_property(Node *);
2 std::list <Node *> output_list;
3 mutex L;
4 // ...
5 void walk(Node *x)
6 {
7 if (x) {
8 if (has_property(x)) {
9 L.lock();

10 output_list.push_back(x);
11 L.unlock();
12 }
13 cilk_spawn walk(x->left);
14 walk(x->right);
15 cilk_sync;
16 }
17 }

Figure 3: Cilk++ code that solves the determinacy race using a mutex.

naive parallelization contains a determinacy race. Specifically, two
parallel strands may attempt to update the shared global variable
output_list in parallel at line 8.

The traditional solution to fixing this kind of determinacy race is
to associate a mutual-exclusion lock (mutex)L with output_list,
as is shown in Figure 3. Before updatingoutput_list, the mutex
L is acquired in line 9, and after the update, it is released in line 11.
Although this code now operates correctly, the mutex may create
a bottleneck in the computation. If there are many nodes that have
the desired property, the contention on the mutex can destroy all the
parallelism. For example, on one set of test inputs for a real-world
tree-walking code that performed collision-detection of mechanical
assemblies, lock contention actually degraded performance on 4
processors so that it was worse than running on a single processor.

In addition, the locking solution has the problem that it jumbles
up the order of list elements. For this application, that might be
okay, but some applications may depend on the order produced by
the serial execution.

An alternative to locking is to restructure the code to accumulate
the output lists in each subcomputation and concatenate them when
the computations return. If one is careful, it is also possible to keep
the order of elements in the list the same as in the serial execution.
For the simple tree-walking code, code restructuring may suffice,
but for many larger codes, disrupting the original logic can be time-
consuming and tedious undertaking, and it may require expert skill,
making it impractical for parallelizing large legacy codes.

This paper provides a novel approach to avoiding determinacy
races in code with nonlocal variables. We introduce “hyperob-
jects,” a linguistic construct that allows many strands to coordinate
in updating a shared variable or data structure independently by
providing different but coordinated views of the object to different
threads at the same time. Hyperobjects avoid problems endemic
to locking, such as lock contention, deadlock, priority inversion,
convoying, etc. We describe three kinds of hyperobjects: reducers,
holders, and splitters.

The hyperobject as seen by a given strand of an execution is
called the strand’s “view” of the hyperobject. A strand’s view is

not a value, but a stateful object with a memory address (a C++
“lvalue”). A strand can access and change its view’s state indepen-
dently, without synchronizing with other strands. Throughout the
execution of a strand, the strand’s view of the hyperobject is pri-
vate, thereby providing isolation from other strands. When two or
more strands join, their different views are combined according to
a system- or user-defined method, one or more of the views may
be destroyed, and one or more of the views may be transferred to
another strand. The identity of the hyperobject remains the same
from strand to strand, even though the strands’ respective views of
the hyperobject may differ. Thus, any query or update to the hyper-
object — whether free or bound in a linguistic construct, whether
accessed as a named variable, as a global variable, as a field in
an object, as an element of an array, as a reference, as a parame-
ter, through a pointer, etc. — may update the strand’s view. This
transparency of reference, whereby a strand’s query or update to
a hyperobject always refers to the strand’s view, is not tied to any
specific linguistic construct, but happens automatically wherever
and whenever the hyperobject is accessed. Hyperobjects simplify
the parallelization of programs with nonlocal variables, such as the
global variableoutput_list in Figure 1. Moreover, they preserve
the advantages of parallelism without forcing the programmer to
restructure the logic of his or her program.

The remainder of this paper is organized as follows. Section 2
describes prior work on “reduction” mechanisms. Section 3 de-
scribes reducer hyperobjects, which allow associative updates on
nonlocal variables to be performed in parallel, and Section 4 de-
scribes how we have implemented them in Cilk++. Section 5 de-
scribes and analyzes a randomized protocol for ensuring atomicity
in the reducer implementation which incurs minimal overhead for
mutual-exclusion locking. Section 6 describes holder hyperobjects,
which can be viewed as a structured means of providing thread-
local storage. Section 7 describes splitter hyperobjects, which pro-
vide a means of parallelizing codes that perform an operation on a
nonlocal variable; call a subroutine, perhaps recursively; and then
undo the operation on the nonlocal variable. Section 8 concludes
with a discussion of more general classes of hyperobjects.

2 BACKGROUND
The first type of hyperobject we shall examine is a “reducer,” which
is presented in detail in Section 3. In this section, we’ll review the
notion of a reduction and how concurrency platforms have sup-
ported reductions prior to hyperobjects.

The idea of “reducing” a set of values dates back at least to the
programming language APL [12], invented by the late Kenneth
Iverson. In APL, one can “sum-reduce” the elements of a vector
A by simply writing +/A, which adds up all the numbers in the
vector. APL provided a variety of reduction operators besides ad-
dition, but it did not let users write their own operators. As parallel
computing technology developed, reductions naturally found their
way into parallel programming languages — including *Lisp [14],
NESL [2], ZPL [5], and High Performance Fortran [13], to name
only a few — because reduction can be easily implemented as a
logarithmic-height parallel tree of execution.

The growing set of modern multicore concurrency platforms all
feature some form of reduction mechanism:

• OpenMP [19] provides a reduction clause.

• Intel’s Threading Building Blocks (TBB) [20] provides a
parallel_reduce template function.

• Microsoft’s upcoming Parallel Pattern Library (PPL) [15]
provides a “combinable object” construct.

For example, the code snippet in Figure 4 illustrates the OpenMP
syntax for a sum reduction within a parallelfor loop. In this code,



1 int compute(const X& v);
2 int main()
3 {
4 const std:: size_t n = 1000000;
5 extern X myArray[n];
6 // ...
7 int result (0);
8 #pragma omp parallel for \
9 reduction (+: result)

10 for (std:: size_t i = 0; i < n; ++i) {
11 result += compute(myArray[i]);
12 }
13 std::cout << "The result is: " << result
14 << std::endl;
15 return 0;
16 }

Figure 4: An example of a sum reduction in OpenMP.

the variableresult is designated as a reduction variable of a paral-
lel loop in the pragma preceding thefor loop. Without this desig-
nation, the various iterations of the parallel loop would race on the
update ofresult. The iterations of the loop are spread across the
available processors, and local copies of the variableresult are
created for each processor. At the end of the loop, the processors’
local values ofresult are summed to produce the final value. In
order for the result to be the same as the serial code produces, how-
ever, the reduction operation must be associative and commutative,
because the implementation may jumble up the order of the opera-
tions as it load-balances the loop iterations across the processors.

TBB and PPL provide similar functionality in their own ways.
All three concurrency platforms support other reduction operations
besides addition, and TBB and PPL allow programmers to supply
their own. Moreover, TBB does not require the reduction operation
to be commutative in order to produce the same result as serial code
would produce — associativity suffices.

3 REDUCERS
The hyperobject approach to reductions differs markedly from ear-
lier approaches, as well as those of OpenMP, TBB, and PPL. Al-
though the general concept of reduction is similar, Cilk++ reducer
hyperobjects provide a flexible and powerful mechanism that offers
the following advantages:

• Reducers can be used to parallelize many programs contain-
ing global (or nonlocal) variables without locking, atomic up-
dating, or the need to logically restructure the code.

• The programmer can count on a deterministic result as long
as the reducer operator is associative. Commutativity is not
required.

• Reducers operate independently of any control constructs,
such as parallelfor, and of any data structures that contribute
their values to the final result.

This section introduces reducer hyperobjects, showing how they
can be used to alleviate races on nonlocal variables without sub-
stantial code restructuring. We explain how a programmer can de-
fine custom reducers in terms of algebraic monoids, and we give an
operational semantics for reducers.

Using reducers
Figure 5 illustrates how the code in Figure 4 might be written in
Cilk++ with reducers. Thesum_reducer<int> template, which
we will define later in this section (Figure 8), declaresresult
to be a reducer hyperobject over integers with addition as the re-
duction operator. Thecilk_for keyword indicates that all itera-
tions of the loop can operate in parallel, similar to the parallelfor

1 int compute(const X& v);
2 int cilk_main ()
3 {
4 const std:: size_t n = 1000000;
5 extern X myArray[n];
6 // ...
7 sum_reducer <int > result (0);
8 cilk_for (std:: size_t i = 0; i < n; ++i)
9 result += compute(myArray[i]);

10
11 std::cout << "The result is: "
12 << result.get_value ()
13 << std::endl;
14 return 0;
15 }

Figure 5: A translation of the code in Figure 4 into Cilk++ with reducers.

1 bool has_property(Node *);
2 list_append_reducer <Node *> output_list;
3 // ...
4 void walk(Node *x)
5 {
6 if (x) {
7 if (has_property(x))
8 output_list.push_back(x);
9 cilk_spawn walk(x->left);

10 walk(x->right);
11 cilk_sync;
12 }
13 }

Figure 6: A Cilk++ parallelization of the code in Figure 1 which uses a
reducer hyperobject to avoid determinacy races.

pragma in OpenMP. As with OpenMP, the iterations of the loop
are spread across the available processors, and local views of the
variableresultare created. There, however, the similarity ends, be-
cause Cilk++ does not wait until the end of the loop to combine the
local views, as OpenMP does. Instead, it combines them in such a
way that the operator (addition in this case) need not be commuta-
tive to produce the same result as would a serial execution. When
the loop is over, the underlying integer value can be extracted from
the reducer using theget_value() member function.

As another example, Figure 6 shows how the tree-walking code
from Figure 1 might be parallelized using a reducer. Line 2 de-
claresoutput_list to be a reducer hyperobject for list append-
ing. (We will define thelist_append_reducer later in this sec-
tion (Figure 9).) This parallelization takes advantage of the fact that
list appending is associative. As the Cilk++ runtime system load-
balances this computation over the available processors, it ensures
that each branch of the recursive computation has access to a pri-
vate view of the variableoutput_list, eliminating races on this
global variable without requiring locks. When the branches syn-
chronize, the private views are reduced by concatenating the lists,
and Cilk++ carefully maintains the proper ordering so that the re-
sulting list contains the identical elements in the same order as in a
serial execution.

By using reducers, all the programmer does is identify the global
variables as reducers when they are declared. No logic needs to
be restructured, and if the programmer fails to catch all the use
instances, the compiler reports a type error. By contrast, most
concurrency platforms have a hard time expressing race-free par-
allelization of this kind of code. The reason is that reductions in
most languages are tied to a control construct. For example, reduc-
tion in OpenMP is tied to the parallelfor loop pragma. Moreover,
the set of reductions in OpenMP is hardwired into the language,
and list appending is not supported. Consequently, OpenMP can-
not solve the problem of races on global variables using its mech-
anism. TBB and PPL have similar limitations, although they do
allow programmer-defined reduction operators.



1 struct sum_monoid : cilk:: monoid_base <int > {
2 void reduce(int* left , int* right) const {
3 *left += *right;
4 }
5 void identity(int* p) const {
6 new (p) int(0);
7 }
8 };
9

10 cilk::reducer <sum_monoid > x;

Figure 7: A C++ representation of the monoid(Z,+,0), of integers (more
precisely,int’s) with addition. Line 10 definesx to be a reducer over
sum_monoid.

Defining reducers
Hyperobject functionality is not built into the Cilk++ language
and compiler. Rather, hyperobjects are specified as ordinary C++
classes that interface directly to the Cilk++ runtime system. A
Cilk++ reducer can be defined with respect to any C++ class
that implements an algebraic “monoid.” Recall that an algebraic
monoid is a triple(T,⊗,e), whereT is a set and⊗ is an associa-
tive binary operation overT with identity e. In Cilk++, a monoid
(T,⊗,e) is defined in terms of a C++ classM that inherits from the
base classcilk::monoid_base<T>, whereT is a type that rep-
resents the setT . The classM must supply a member function
reduce() that implements the binary operator⊗ and a member
function identity() that constructs a fresh identitye. (If the
identity() function is not defined, it defaults to the value pro-
duced by the default constructor forT.) Figure 7 shows a simple
definition for the monoid of integers with addition.

The templatecilk::reducer<M> is used to define a reducer
over a monoidM, as is shown in line 10 of Figure 7, and it connects
the monoid to the Cilk++ runtime system. When the program ac-
cesses the member functionx.view(), the runtime system looks
up and returns the local view as a reference to the underlying type
T upon which the monoidM is defined. The template also defines
operator() as a synonym forview(), so that one can write the
shorterx(), instead ofx.view().

As a practical matter, thereduce() function need not actually
be associative — as in the case of floating-point addition — but
a reducer based on such a “monoid” may operate nondetermin-
istically. Similarly, identity() need not be a true identity. If
reduce() is associative andidentity() is a true identity, how-
ever, the behavior of such a “properly defined” reducer is guar-
anteed to be the same no matter how the computation is scheduled.
Properly defined reducers greatly simplify debugging, because they
behave deterministically.

Although a definition such as that in Figure 7 suffices for obtain-
ing reducer functionality, it suffers from two problems. First, the
syntax for accessing reducers provided by Figure 7 is rather clumsy.
For example, in order to increment the reducerx from Figure 7, a
programmer needs to writex.view()++ (or x()++), rather than
the simplerx++, as is probably written in the programmer’s legacy
C++ code. Second, access to the reducer is unconstrained. For ex-
ample, even though the reducer in Figure 7 is supposed to reduce
over addition, nothing prevents a programmer from accidentally
writing x.view() *= 2, becausex.view() is an ordinary refer-
ence toint, and the programmer is free to do anything with the
value he or she pleases.

To remedy these deficiencies, it is good programming practice
to “wrap” reducers into abstract data types. For example, one can
write a library wrapper, such as is shown in Figure 8, which allows
the code in Figure 5 to use the simple syntaxresult += X. More-
over, it forbids users of the library from writingresult *= X,
which would be inconsistent with a summing reducer. Similarly,
Figure 9 shows how the monoid of lists with operation append
might be similarly wrapped.

1 template <class T>
2 class sum_reducer
3 {
4 struct Monoid : cilk:: monoid_base <T> {
5 void reduce(T* left , T* right) const {
6 *left += *right;
7 }
8 void identity(T* p) const {
9 new (p) T(0);

10 }
11 };
12
13 cilk::reducer <Monoid > reducerImp;
14
15 public:
16 sum_reducer () : reducerImp () { }
17
18 explicit sum_reducer(const T &init)
19 : reducerImp(init) { }
20
21 sum_reducer& operator +=(T x) {
22 reducerImp.view() += x;
23 return *this;
24 }
25
26 sum_reducer& operator -=(T x) {
27 reducerImp.view() -= x;
28 return *this;
29 }
30
31 sum_reducer& operator ++() {
32 ++ reducerImp.view();
33 return *this;
34 }
35
36 void operator ++(int) {
37 ++ reducerImp.view();
38 }
39
40 sum_reducer& operator --() {
41 --reducerImp.view();
42 return *this;
43 }
44
45 void operator --(int) {
46 --reducerImp.view();
47 }
48
49 T get_value () const {
50 return reducerImp.view();
51 }
52 };

Figure 8: The definition ofsum_reducer used in Figure 5.

Cilk++ provides a library of frequently used reducers, which in-
cludes a summing reducer (calledreducer_opadd), list append
reducers, and so on. Programmers can also write their own reduc-
ers in the style shown in Figure 8.

Semantics of reducers
The semantics of reducers can be understood operationally as fol-
lows. At any time during the execution of a Cilk++ program, a
view of the reducer is an object that is uniquely “owned” by one
strand in the Cilk++ program. Ifh is a reducer andS is a strand,
we denote byhS the view of h owned byS. When first created,
the reducer consists of a single view owned by the strand that cre-
ates the hyperobject. When a Cilk directive such ascilk_spawn
andcilk_sync is executed, however, ownership of views may be
transferred and additional views may be created or destroyed.

In particular, acilk_spawn statement creates two new Cilk++
strands: the child strand that is spawned, and the parent strand that
continues after thecilk_spawn statement. Upon acilk_spawn
statement:
• The child strand owns the view owned by the parent function

before thecilk_spawn.
• The parent strand owns a new view, initialized toe.

After a spawned child returns, the view owned by the child is “re-
duced” with the view owned by the parent. Toreducethe viewxC



1 template <class T>
2 class list_append_reducer
3 {
4 struct Monoid
5 : cilk:: monoid_base <std::list <T> >
6 {
7 void identity(std::list <T>* p) const {
8 new (p) std::list <T>;
9 }

10 void reduce(std::list <T>* a,
11 std::list <T>* b) const {
12 a->splice(a->end(), *b);
13 }
14 };
15
16 cilk::reducer <Monoid > reducerImp;
17
18 public:
19 list_append_reducer () : reducerImp () { }
20
21 void push_back(const T& element) {
22 reducerImp ().push_back(element);
23 }
24
25 const std::list <T>& get_value () const {
26 return reducerImp ();
27 }
28 };

Figure 9: The definition oflist_append_reducer used in Figure 6.

of a completed child strandC with the viewxP of a parent strandP
means the following:
• xC← xC⊗xP, where the symbol “←” denotes the assignment

operator and⊗ is the binary operator implemented by the ap-
propriatereduce() function. As a “special” optimization, if
a viewx is combined with the identity viewe, Cilk++ assumes
that the resulting view can be produced asx without applying
areduce() function.

• Destroy the viewxP.
• The parent strandP becomes the new owner ofxC.

Why do we choose a spawned child to own the view owned by
the parent function before thecilk_spawn, rather than passing the
view to the continuation and creating a new view for the child? The
reason is that in a serial execution, the “special” optimization above
allows the entire program to be executed with a single view with no
overhead for reducing.

The Cilk++ runtime system guarantees that all children views
are reduced with the parent by the time the parent passes the
cilk_sync construct that waits for those children, and that all
reductions are performed in some order consistent with the serial
execution of the program. The Cilk++ runtime system does not
delay all reductions until acilk_sync, however, because such a
delay may require an unbounded amount of memory to store all
unreduced views. Instead, we allow the views of completed chil-
dren to be reduced with each other at any time before passing the
cilk_sync, provided that the serial left-to-right order is preserved.

At an ordinary function call, the child inherits the view owned by
the parent, the parent owns nothing while the child is running, and
the parent reacquires ownership of the view when the child returns.
The fact that the parent owns no view while the child is running
does not cause an error, because the parent performing a function
call does not resume execution until the child returns.

No special handling of reducers is necessary forcilk_for
loops, because the Cilk++ compiler translates the loop into divide-
and-conquer recursion usingcilk_spawn andcilk_sync so that
each iteration of the loop body conceptually becomes a leaf of a
logarithmic-depth tree of execution. Thus, the runtime system only
needs to manage reducers atcilk_spawn’s andcilk_sync’s.

H

frame

ll k
T

call stack

spawn deque

Figure 10: Runtime system data structures as seen by a single worker.
Each worker owns a spawn deque, each element of which is a call stack
implemented as a linked list of frames, ordered left to right in Figure 10 as
youngest to oldest. The deque itself is implemented as an arrayof pointers,
where array positionX contains a valid pointer forH ≤ X < T .

4 IMPLEMENTATION OF REDUCERS
This section describes how we have implemented reducers in
Cilk++. We begin with a brief overview of the Cilk++ runtime
system, which mimics aspects of the MIT Cilk runtime system [8].
Then, we describe the changes necessary to implement reducers.
Finally, we discuss some optimizations.

The Cilk++ runtime system implements a work-stealing sched-
uler in the style of [3]. A set ofworker threads (such as a Pthread
[11] or Windows API thread [10]) cooperate in the execution of a
Cilk++ program. As long as a worker has work to do, it operates
independently of other workers. When idle, a worker obtains work
by stealing it from another worker. Recall from Section 1 that the
cilk_spawn keyword indicates the potential for concurrent execu-
tion rather than mandating it. This potential parallelism is realized
only if stealing actually occurs.

Runtime data structures
Frames. Calling or spawning a Cilk++ procedure creates a new
procedure instance, which results in the runtime creation of anac-
tivation record, or frame. As in C++ and many other languages,
the frame provides storage for the local variables of the procedure
instance, storage for temporary values, linkage information for re-
turning values to the caller, etc. In addition, Cilk++ frames main-
tain the following state needed for a parallel execution:
• a lock;
• acontinuation, which contains enough information to resume

the frame after a suspension point;
• a join counter, which counts how many child frames are out-

standing;
• a pointer to the parent frame;
• a doubly-linked list of outstanding children — specifically,

each frame keeps pointers to its first child, its left sibling, and
its right sibling.

Although frames are created and destroyed dynamically during
the execution of the program, they always form a rooted tree (or
what is sometimes called a “cactus stack” reminiscent of [17]). We
say that a node in the cactus stack isolder than its descendants and
youngerthan its ancestors.

Data structures of a worker. Figure 10 illustrates the runtime
system data structures from the point of view of a worker. The
primary scheduling mechanism is aspawn deque1 of call stacks,
where each call stack is implemented as a (singly) linked list of

1A deque [6, p. 236] is a double-ended queue.



frames, each frame pointing to its parent. Each worker owns a
spawn deque. The spawn deque is an “output-restricted” deque, in
that a worker can insert and remove call stacks on thetail end of
its deque (indexed byT ), but other workers (“thieves”) can only
remove from theheadend (indexed byH). In addition to the call
stacks stored within the spawn deque, each worker maintains acur-
rent call stack— a call stack under construction that has not been
pushed onto the deque — as well as other ancillary structures such
as locks and free lists for memory allocation. Although we store the
current call stack separately, it is sometimes convenient to view it
as part of anextended deque, where we treat the current call stack
abstractly as an extra element of the deque at indexT .

Stack frames and full frames. At any point in time during the
execution, frames stalled at acilk_sync lie outside any extended
deque, but those that belong to an extended deque admit a sim-
plified storage scheme. The youngest frame of an extended deque
has no children, unless it is also the oldest frame in the extended
deque. All other frames in the extended deque have exactly one
child. Thus, there is no need to store the join counter and the list
of children for frames in an extended deque, except for the old-
est frame. Thus, Cilk++ partitions frames into two classes:stack
frames, which only store a continuation and a parent pointer (but
not a lock, join counter, or list of children), andfull frames, which
store the full parallel state.

This partitioning improves the overall efficiency of the sys-
tem [8]. Roughly speaking, stack-frame manipulation is cheap and
is inlined by the Cilk++ compiler, whereas full-frame manipulation
is more expensive, usually involving the acquisition of a lock. Fig-
ure 11 shows a typical instance of the runtime-system data struc-
tures, illustrating deques, stack frames, and full frames.

Invariants
In order to understand the operation of the Cilk++ runtime system,
it is helpful to bear in mind the following invariants, which we state
without proof.

1. The oldest frame in an extended deque, if any, is a full frame.
All other frames are stack frames.

2. A frame not belonging to any extended deque is a full frame.
3. All descendants of a stack frame are stack frames. Equiva-

lently, all ancestors of a full frame are full frames.
4. In each extended deque, the youngest frame on a level-i call

stack is the parent of the frame on the level-i+1 call stack.
5. A stack frame belongs to one (and only one) extended deque.
6. The oldest frame in a call stack is either a stack frame created

by a spawn, or a full frame. That is, the oldest frame was not
created by a function call.)

7. Every frame in a call stack, except for the oldest (Invariant 6),
was created by a function call, that is, not by a spawn.

8. When a stack frame is stolen, it is promoted to a full frame.
Thus, a stack frame has never been stolen.

9. A frame being executed by a worker is the youngest frame in
the worker’s extended deque.

10. While a worker executes a stack frame, the frame has no chil-
dren, and thus the execution of acilk_sync statement is a
no-op. (This invariant is false for full frames.)

Actions of the runtime system
A Cilk++ program executes most of the time as a C++ program. Its
execution differs from C++ at distinguished points of the program:
when calling and spawning functions, when synching, and when
returning from a function. We now describe the action of the run-
time system at these points. The actions we describe are intended
to execute as if they were atomic, which is enforced using locks
stored in full frames, as described in Section 5.

A

C

B

D

Figure 11: A global view of the Cilk++ runtime system data structures.
Rectangles represent frames, with the dark rectangles denoting full frames.
FramesA andC belong to no deque, and consequently they are full. In
particular,C stores an explicit pointer to its full-frame parentA. FramesB
andD are full because they are the oldest frames in their respective deques.
Their children are stored implicitly in the deque, but these frames maintain
an explicit pointer to their respective full-frame parentsA andC.

Function call. To call a procedure instanceB from a procedure
instanceA, a worker sets the continuation inA’s frame so that the
execution ofA resumes immediately after the call whenB returns.
The worker then allocates a stack frame forB and pushesB onto
the current call stack as a child ofA’s frame. The worker then
executesB.

Spawn. To spawn a procedure instanceB from a procedure in-
stanceA, a worker sets the continuation inA’s frame so that the
execution ofA resumes immediately after thecilk_spawn state-
ment. The worker then allocates a stack frame forB, pushes the
current call stack onto the tail of its deque, and starts a fresh cur-
rent call stack containing onlyB. The worker then executesB.

Return from a call. If the frameA executing the return is a
stack frame, the worker popsA from the current call stack. The
current call stack is now nonempty (Invariant 6), and its youngest
frame isA’a parent. The worker resumes the execution from the
continuation ofA’s parent.

Otherwise, the worker popsA (a full frame) from the current
call stack. The worker’s extended deque is now empty (Invari-
ant 1). The worker executes an unconditional-steal of the parent
frame (which is full by Invariant 3).

Return from a spawn. If the frameA executing the return is a
stack frame, the worker popsA from the current call stack, which
empties it (Invariant 7). The worker tries to pop a call stackS from
the tail of its deque. If the pop operation succeeds (the deque was
nonempty), the execution continues from the continuation ofA’s
parent (the youngest element ofS), usingS as the new current call
stack. Otherwise, the worker begins random work stealing.

If A is a full frame, the worker popsA from the current call stack,
which empties the worker’s extended deque (Invariant 1). The
worker executes a provably-good-steal of the parent frame (which
is full by Invariant 3).

Sync. If the frameA executing acilk_sync is a stack frame, do
nothing. (Invariant 10).

Otherwise,A is a full frame with a join counter. PopA from
the current call stack (which empties the extended deque by Invari-
ant 1), incrementA’s join counter, and provably-good-stealA.2

2The counter-intuitive increment of the join counter arises because we
consider a sync equivalent to a spawn of a fake child in which the parent
is immediately stolen and the child immediately returns. The increment



Randomly steal work. When a workerw becomes idle, it be-
comes athief and steals work from avictim worker chosen at ran-
dom, as follows:
• Pick a random victimv, wherev 6= w. Repeat this step while

the deque ofv is empty.
• Remove the oldest call stack from the deque ofv, and promote

all stack frames to full frames. For every promoted frame,
increment the join counter of the parent frame (full by Invari-
ant 3). Make every newly created child the rightmost child of
its parent.

• Let loot be the youngest frame that was stolen. Promote the
oldest frame now inv’s extended deque to a full frame and
make it the rightmost child ofloot. Incrementloot’s join
counter.

• Execute a resume-full-frame action onloot.
Provably good steal. Assert that the frameA begin stolen is a

full frame and the extended deque is empty. Decrement the join
counter ofA. If the join counter is 0 and no worker is working
on A, execute a resume-full-frame action onA. Otherwise, begin
random work stealing.3

Unconditionally steal. Assert that the frameA being stolen is
a full frame, the extended deque is empty, andA’s join counter is
positive. Decrement the join counter ofA. Execute a resume-full-
frame action onA.

Resume full frame. Assert that the frameA being resumed is
a full frame and the extended deque is empty. Set the current call
stack to a fresh stack consisting ofA only. Execute the continuation
of A.

Modifications for reducers
The Cilk++ implementation of reducers uses the address of the re-
ducer object as a key into ahypermaphash table, which maps
reducers into local views for the worker performing the look-up.
Hypermaps are lazy: elements are not stored in a hypermap until
accessed for the first time, in which case the Cilk++ runtime system
inserts an identity value of the appropriate type into the hypermap.
Laziness allows us to create anempty hypermap/0, defined as a hy-
permap that maps all reducers into views containing identities, in
Θ(1) time.

For left hypermapL and right hypermapR, we define the opera-
tion REDUCE(L,R) as follows. For all reducersx, set

L(x)← L(x)⊗R(x) ,

whereL(x) denotes the view resulting from the look-up of the ad-
dress ofx in hypermapL, and similarly forR(x). The left/right
distinction is important, because the operation⊗might not be com-
mutative. If the operation⊗ is associative, the result of the compu-
tation is the same as if the program executed serially. REDUCE is
destructive: it updatesL and destroysR, freeing all memory asso-
ciated withR.

The Cilk++ implementation maintains hypermaps in full frames
only. To access a reducerx while executing in a stack frame, the
worker looks up the address ofx in the hypermap of the least an-
cestor full frame, that is, the full frame at the head of the deque to
which the stack frame belongs.

To allow for lock-free access to the hypermap of a full frame
while siblings and children of the frame are terminating, each
full frame stores three hypermaps, denoted byUSER, RIGHT, and
CHILDREN. TheUSER hypermap is the only one used for look-up
of reducers in the user’s program. The other two hypermaps are

accounts for the fake child. This equivalence holds becausein the Cilk++
scheduler, the last spawn returning to a parent continues the execution of
the parent.

3This steal is “provably good,” because it guarantees the space and time
properties of the scheduler [3].

used for bookkeeping purposes. The three hypermaps per node are
reminiscent of the three copies of values used in the Euler tour tech-
nique [21]. Informally, theCHILDREN hypermap contains the ac-
cumulated results of completed children frames, but to avoid races
with user code that might be running concurrently, these views have
not yet been reduced into the parent’sUSERhypermap. TheRIGHT
hypermap contains the accumulated values of the current frame’s
right siblings that have already terminated. (A “right” sibling of a
frame is one that comes after the frame in the serial order of exe-
cution, and its values are therefore on the right-hand side of the⊗
operator.)

When the top-level full frame is initially created, all three hy-
permaps are initially empty. The hypermaps are updated in the
following situations:
• upon a look-up failure,
• upon a steal,
• upon a return from a call,
• upon a return from a spawn,
• at acilk_sync.

We discuss each of these cases in turn.
Look-up failure. A look-up failure inserts a view containing an

identity element for the reducer into the hypermap. The look-up
operation returns the newly inserted identity.

Random work stealing. A random steal operation steals a full
frameP and replaces it with a new full frameC in the victim. At
the end of the stealing protocol, update the hypermaps as follows:
• USERC← USERP;
• USERP← /0;
• CHILDRENP← /0;
• RIGHTP← /0.

In addition, if the a random steal operation creates new full frames,
set all their hypermaps to/0. These updates are consistent with the
intended semantics of reducers, in which the child owns the view
and the parent owns a new identity view.

Return from a call. LetC be a child frame of the parent frameP
that originally calledC, and suppose thatC returns. We distinguish
two cases: the “fast path” whenC is a stack frame, and the “slow
path” whenC is a full frame.
• If C is a stack frame, do nothing, because bothP andC share

the view stored in the map at the head of the deque to which
bothP andC belong.

• Otherwise,C is a full frame. We updateUSERP ← USERC,
which transfers ownership of child views to the parent. The
other two hypermaps ofC are guaranteed to be empty and do
not participate in the update.

Return from a spawn. Let C be a child frame of the parent
frame P that originally spawnedC, and suppose thatC returns.
Again we distinguish the “fast path” whenC is a stack frame from
the “slow path” whenC is a full frame:
• If C is a stack frame, do nothing, which correctly implements

the intended semantics of reducers, as can be seen as follows.
BecauseC is a stack frame,P has not been stolen sinceC
was spawned. Thus,P’s view of every reducer still contains
the identitye created by the spawn. The reducer semantics
allows forC’s views to be reduced intoP’s at this point, and
since we are reducing all views with an identitye, the reduc-
tion operation is trivial: all we have to do is to transfer the
ownership of the views fromC to P. Since bothP’s andC’s
views are stored in the map at the head of the deque to which
bothP andC belong, such a transfer requires no action.

• Otherwise, C is a full frame. We updateUSERC ←
REDUCE(USERC,RIGHTC), which is to say that we reduce
the views of all completed right-sibling frames ofC into the



views ofC. Then, depending on whetherC has a left sibling
or not4, we have two subcases:

1. If C has a left siblingL, we updateRIGHTL ←
REDUCE(RIGHTL,USERC), accumulating into the
RIGHT hypermap ofL.

2. Otherwise,C is the leftmost child ofP, and we
updateCHILDRENP←REDUCE(CHILDRENP,USERC),
thereby storing the accumulated values ofC’s views
into the parent, since there is no left sibling into which
to reduce.

Observe that a race condition exists betweenC reading
RIGHTC, and the right sibling ofC (if any), who might be
trying to write RIGHTC at the same time. Resolving this race
condition efficiently is a matter of some delicacy, which we
discuss in detail in Section 5.

Sync. A cilk_sync statement waits until all children have com-
pleted. When frameP executes acilk_sync, one of following two
cases applies:
• If P is a stack frame, do nothing. Doing nothing is correct

because all children ofP, if any exist, were stack frames, and
thus they transferred ownership of their views toP when they
completed. Thus, no outstanding child views exist that must
be reduced intoP’s.

• If P is a full frame, then afterP passes thecilk_sync state-
ment but before executing any client code, we perform the up-
dateUSERP ← REDUCE(CHILDRENP,USERP). This update
reduces all reducers of completed children into the parent.

Optimizations
To access a reducerx, the worker performs the associative look-up
described above. The overhead of this operation is comparable to
that of a few function calls, and thus it is desirable to optimize it.
The following paragraphs describe some optimizations.

Common subexpression elimination. The semantics of reduc-
ers ensures that two references to a reducerx return the same
view as long as the intervening program code does not contain
a cilk_spawn or cilk_sync statement or cross iterations of a
cilk_for loop. The intervening program code may call a func-
tion that spawns, however, because the operational semantics of re-
ducers guarantee that the view before the function call is the same
as the view after the function call. In these situations, the Cilk++
compiler emits code to perform the associative look-up only once
per fragment, reducing the overhead of accessing a reducer to a
single indirect reference. This optimization is a type of common-
subexpression elimination [1, p. 633] routinely employed by com-
pilers. It is especially effective at minimizing the reducer overhead
in cilk_for loops.

Dynamic caching of look-ups. The result of an associative
look-up can be cached in the reducer object itself. In this opti-
mization, each reducer object provides an arrayA of P pointers to
views, whereP is the maximum number of workers in the system.
All such pointers are initially null. When accessing a reducerx,
worker w first reads the pointerx.A[w]. If the pointer is not null,
then the worker can use the pointer to access the view. Otherwise,
the worker looks up the address ofx in the appropriate hypermap
and caches the result of the look-up intox.A[w]. When the hyper-
map of a worker changes, for example, because the worker steals a
different frame, the pointers cached by that worker are invalidated.
This optimization, which we have not yet implemented, can reduce
the cost of a look-up to the cost of checking whether a pointer is
null.

4Recall that a full frame stores pointers to its left and right siblings, and
so this information is available inO(1) time.
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Figure 12: Benchmark results for a code that detects collisions in mechan-
ical assemblies.

Static storage class. When the reducer has the static C++ stor-
age class, the associative look-up can be avoided entirely. Since
the address of the reducer is known at link-time, we can allocate
a static global array of sizeP, whereP is the maximum number
of workers, to store views of the reducer. The views are as in the
dynamic-caching optimization, but when a worker looks up a view,
it simply indexes the array with its unique worker ID. An alterna-
tive is to allocate the views of a reducer at a common fixed location
in worker-local storage. We have not yet implemented either of
these optimizations.

Loop variables. When a loop contains several reducers allo-
cated at the same level of nesting outside the loop, the compiler
can aggregate the reducers into a single data structure, and only
one associative look-up need be done for the entire data structure,
rather than one for each reducer. This scheme works, because the
knowledge of how the compiler packs the reducers into the fields of
the data structure outside the loop is visible to the compiler when
processing reducer accesses inside the loop. The Cilk++ compiler
does not currently implement this optimization.

Performance
Figure 12 compares the reducer strategy with locking and with
manually rewriting the code to pass the nonlocal variable as a pa-
rameter. The benchmark is a collision-detection calculation for me-
chanical assemblies, such as motivated the example in Figure 1,
although nodes in the tree may have arbitrary degree. As can be
seen from the Figure 12, all three methods incur some overhead on
1 processor. The locking solution bottoms out due to contention,
which gets worse as the number of processors increases. The re-
ducer solution achieves almost exactly the same performance as
the manual method, but without drastic code rewriting.

5 ANALYSIS OF WORK-STEALING
WITH REDUCERS

When a spawned child completes and is a full frame, we provably-
good-steal its parent and reduce the view of the child into the view
of either its parent or its left sibling. To do so atomically, the
runtime system must acquire locks on two frames. In this sec-
tion, we describe the locking methodology in detail and show that
the Cilk++ work-stealing scheduler incurs no unusual overhead for
waiting on locks.

Recall from Section 4 that when full frameF returns from a
spawn, the Cilk++ runtime system accumulates the reducer map
of F into another nodeF.p, which is either the left sibling ofF in
the spawn tree, or the parent ofF in the spawn tree if no such sib-
ling exists5. The relationF.p can be viewed as defining a binary

5F.p is undefined ifF is the root of the spawn tree, which is never re-
duced into any other node.



tree in whichF.p is the parent ofF , and in fact such asteal tree
is just the left-child, right-sibling representation [6, p. 246] of the
spawn tree. After accumulating the reducers ofF into F.p, the run-
time systemeliminatesF by splicing it out of the steal tree, in a
process similar to tree contraction [16].

WhenF completes, it has no children in the spawn tree, and thus
it has at most one child in the steal tree (its right sibling in the spawn
tree). Thus, the situation never occurs that a node is eliminated that
has two children in the steal tree.

Every successful steal causes one elimination, which occurs
when nodeF completes and its reducers are combined with those
of F.p. To perform the elimination atomically, the runtime sys-
tem engages in a locking protocol. The steal tree is doubly linked,
with each nodeF containingF.p, F. lchild, andF.rsib. In addi-
tion, these fields each have associated lockspL, lchildL, andrsibL,
respectively. The protocol maintains the invariant that to change ei-
ther of the cross-linked pointers between two adjacent nodes in the
tree, both locks must be held. Thus, to eliminate a nodeF , which
is a right sibling of its parent and having one child — without loss
of generality,F. lchild — the locksF.pL, F.p.rsibL, F. lchildL, and
F.rsib .pL must all be held, after which theF can be spliced out
by settingF.p.rsib = F. lchild and F. lchild .p = F.p. Before the
elimination,F ’s hypermap is reduced intoF.p’s.

The four locks correspond to two pairs of acquisitions, each of
whichabstractly locksa single edge between two nodes in the steal
tree. That is, to abstractly lock an edge, the two locks at either
end of the edge must be acquired. To avoid deadlock, the locking
protocol operates as follows.

To abstractly lock the edge(F,F.p), do the following:
1. ACQUIRE(F.pL).
2. If F is a right sibling ofF.p, then ACQUIRE(F.p.rsibL), else

ACQUIRE(F.p. lchildL).
To abstractly lock the edge(F,F.rsib), do the following:

1. ACQUIRE(F.rsibL).
2. If ¬TRY-ACQUIRE(F.rsib .pL), then RELEASE(F.rsibL) and

go to step 1.
The TRY-ACQUIRE function attempts to grab a lock and reports
whether it is successful without blocking if the lock is already held
by another worker. To abstractly lock the edge(F,F. lchild), the
code follows that of(F,F.rsib).

This protocol avoids deadlock, because a worker never holds a
lock in the steal tree while waiting for a lock residing lower in the
tree. Moreover, if two workers contend for an abstract lock on the
same edge, one of the two is guaranteed to obtain the lock in con-
stant time. Finally, the protocol is correct, circumventing the prob-
lem that might occur if abstractly locking(F,F.rsib) were imple-
mented by ACQUIRE(F.rsib .pL) followed by ACQUIRE(F.rsibL),
where the nodeF.rsib could be spliced out and deallocated by an-
other worker afterF ’s worker follows the pointer but before it can
acquire thepL lock in the node.

The remainder of the protocol focuses on abstractly locking the
two edges incident onF so thatF can be spliced out. Perhaps
surprisingly, the two abstract locks can be acquired in an arbitrary
order without causing deadlock. To see why, imagine each node
F as containing an arrow oriented from the edge in the steal tree
thatF ’s worker abstractly locks first to the edge it abstractly locks
second. Because these arrows lie within the steal tree, they cannot
form a cycle and therefore deadlock cannot occur. Nevertheless,
while an arbitrary locking policy does not deadlock, some policies
may lead to a long chain of nodes waiting on each other’s abstract
locks. For example, if we always abstractly lock the edge to the
parent first, it could happen that all the nodes in a long chain up the
tree all need to be eliminated at the same time, and they all grab
the abstract locks on the edges to their parents, thereby creating a
chain of nodes, each waiting for the abstract lock on the edge to its

child. In this case, the time to complete all eliminations could be
proportional to the height of the steal tree.

Our strategy to avoid these long delay chains is to acquire the
two abstract locks in random order: with probability 1/2, a node
F abstractly locks the edge to its parent followed by the edge to
its child, and with probability 1/2 the other way around. This on-
line randomization strategy is reminiscent of the offline strategy
analyzed in [9] for locking in static graphs. We now prove that a
system that implements this policy does not spend too much time
waiting for locks.

Lemma 1. If abstract locks are acquired in random order by the P
processors and the reduce() function takes Θ(1) time to compute,
then the expected time spent in elimination operations is O(M) and
with probability at least 1− ε, at most O(M + lgP + lg(1/ε)) time
is spent in elimination operations, where M is the number of suc-
cessful steals during the computation.

Proof. Assuming that thereduce() function takesΘ(1) time to
compute, the two abstract locks are held forΘ(1) time. Since only
two nodes can compete for any given lock simultaneously, and as-
suming linear waiting on locks [4], the total amount of time nodes
spend waiting for nodes holding two abstract locks is at most pro-
portional to the numberM of successful steals. Thus, we only need
to analyze the time waiting for nodes that are holding only one ab-
stract lock and that are waiting for their second abstract lock.

Consider the eliminations performed by a given worker, and as-
sume that the worker performedm steals, and hencem eliminations
and 2m abstract lock acquisitions. Let us examine the steal tree
at the time of theith abstract lock acquisition by the worker on
nodeF . Every other nodeG in the tree that has not yet been elim-
inated creates an arrow within the node , oriented in the direction
from the first edge it abstractly locks to the second. These edges
create directed paths in the tree. The delay for the worker’sith lock
acquisition can be at most the length of such a directed path starting
at the edge the worker is abstractly locking. Since the orientation
of lock acquisition along this path is fixed, and each pair of acqui-
sitions is correctly oriented with probability 1/2, the waiting time
for F acquiring one of its locks can be bounded by a geometric
distribution:

Pr{the worker waits for≥ k eliminations} ≤ 2−k−1 .

We shall compute a bound on the total time∆ for all 2m abstract
lock acquisitions by the given worker. Notice that the time for the
ith abstract lock acquisition by the worker is independent of the
time for thejth abstract lock acquisition by the same worker fori <
j, because the worker cannot wait twice for the same elimination.
Thus, the probability that the 2m acquisitions take time longer than
∆ eliminations is at most

(

∆
2m

)

2−∆ ≤
( e∆

2m

)2m
2−∆

≤ ε′/P

by choosing∆ = c(m + lg(1/ε′)) for a sufficiently large constant
c > 1. The expectation bound follows directly.

Since there are at mostP workers, the time for all the abstract
lock acquisitions isO(M + lgP+ lg(1/ε)) with probability at least
1− ε (letting ε′ = ε/P), whereM is the total number of successful
steals during the computation.

This analysis allows us to prove the following theorem.

Theorem 2. Consider the execution of any Cilk++ computation
with work T1 and span T∞ on a parallel computer with P pro-
cessors, and assume that the computation uses a reducer whose



1 holder <T> global_variable;
2 // originally: T global_variable
3
4 void proc1() {
5 cilk_for (i = 0; i < N; ++i) { //was: for
6 global_variable = f(i);
7 proc2();
8 }
9 }

10
11 void proc2() { proc3(); }
12 void proc3() { proc4(); }
13
14 void proc4() {
15 use(global_variable);
16 }

Figure 13: An illustration of the use of a holder. Although Cilk++ does not
yet support this syntax for holders, programmers can access the functional-
ity, since holders are a special case of reducers.

reduce() function takes Θ(1) time to compute. Then, the ex-
pected running time, including time for locking to perform reduc-
tions, is T1/P + O(T∞). Moreover, for any ε > 0, with probabil-
ity at least 1− ε, the execution time on P processors is at most
TP ≤ T1/P+O(T∞ + lgP+ lg(1/ε)).

Proof. The proof closely follows the accounting argument in [3],
except with an additional bucket to handle the situation where a
worker (processor) is waiting to acquire an abstract lock. Each
bucket corresponds to a type of task that a worker can be doing
during a step of the algorithm. For each time step, each worker
places one dollar in exactly one bucket. If the execution takes
time TP, then at the end the total number of dollars in all of the
buckets isPTP. Thus, if we sum up all the dollars in all the buck-
ets and divide byP, we obtain the running time. In this case, by
Lemma 1, the waiting-for-lock bucket has size proportional to the
number of successful steals, which isPT∞ and thus contributes at
most a constant factor additional to the “Big Oh” in the expected
running time boundT1/P + O(T∞) proved in [3]. Moreover, with
probability at least 1− ε, the waiting-for-lock bucket has at most
O(M+ lgP+ lg(1/ε)) dollars, again contributing at most a constant
factor to the “Big Oh” in the boundT1/P+O(T∞ + lgP+ lg(1/ε))
proved in [3].

6 HOLDERS
A holder is a hyperobject that generalizes the notion of thread-local
storage. In the code fragment shown in Figure 13, the global vari-
able is used as a mechanism to pass values fromproc1 to proc4
without passing spurious parameters toproc2 and proc3. The
originalfor loop in line 5 has been replaced by acilk_for loop,
which appears to create races onglobal_variable. Races are
avoided, however, becauseglobal_variable is declared to be
a holder in line 1. This technique avoids the need to restructure
proc2 andproc3 to be aware of the values passed fromproc1 to
proc4.

The implementation of holders turns out to be straightforward,
because a holder is a special case of a reducer whose (associative)
binary operator⊗ always returns the left input element. Figure 14
shows how a holder can be defined in terms of a reducer.

7 SPLITTERS
Another type of hyperobject that appears to be useful for paralleliz-
ing legacy applications is a “splitter.”6 Consider the example code
in Figure 15 which walks a binary tree and computes the maximum

6We have not yet implemented splitters in Cilk++.

1 template <class T>
2 struct void_monoid : cilk:: monoid_base <T>
3 {
4 typedef T value_type;
5 void reduce(T* left , T* right) const { }
6 void identity(T* p) const { new (p) T(); }
7 };
8
9 template <class T>

10 class holder
11 : public cilk::reducer <void_monoid <T> >
12 {
13 public:
14 operator T&() { return this ->view(); }
15 };

Figure 14: The definition ofholder in terms of reducers.

1 int depth (0);
2 int max_depth (0);
3 /* ... */
4 void walk(Node *x)
5 {
6 switch (x->kind) {
7 case Node::LEAF:
8 max_depth = max(max_depth , depth);
9 break;

10 case Node:: INTERNAL:
11 ++depth;
12 walk(x->left);
13 walk(x->right);
14 --depth;
15 break;
16 }
17 }

Figure 15: A C++ program that determines the maximum depth of a node
in a binary tree using global variables.

depthmax_depth of any leaf in the tree. The code maintains a
global variabledepth indicating the depth of the current node. It
incrementsdepth in line 11 before recursively visiting the children
of a node and decrementsdepth in line 14 after visiting the chil-
dren. Whenever the depth of a leaf exceeds the maximum depth
seen so far, stored in another global variablemax_depth, line 8
updates the maximum depth. Although this code makes use of a
global variable to store the depth, the code could be rewritten to
pass the incremented depth as an argument.

Unfortunately, rewriting a large application that uses global vari-
ables in this way can be tedious and error prone, and the opera-
tions can be more complex than simple increments/decrements of
a global variable. In general, the kind of usage pattern involves an
operation paired with its inverse operation. The paired operations
might be a push/pop on a stack or a modification/restoration of a
complex data structure. To implement a backtracking search, for
example, one can keep a global data structure for the state of the
search. Each step of the search involves modifying the data struc-
ture, and when the search backtracks, the modification is undone.

Parallelizing the code in Figure 15 at first may seem straightfor-
ward. We can spawn each of the recursivewalk() routines in lines
12–13. Themax_depth variable can be made into a reducer with
the maximum operator. Thedepth variable is problematic, how-
ever. If nothing is done, then a determinacy race occurs, because
the two spawned subcomputations both incrementdepth in par-
allel. Moreover, as these subcomputations themselves recursively
spawn, many more races occur. What we would like is for each of
the two spawned computations to treat the global variabledepth as
if it were a local variable, so that it has the same value in a parallel
execution as it does in a serial execution.

A splitter hyperobject provides this functionality, allowing each
subcomputation to modify its own view ofdepth without inter-
ference. Figure 16 shows how the code from Figure 15 can be
parallelized by declaring the global variabledepth to be a splitter.

Let us be precise about the semantics of splitters. Recall that a



1 splitter <int > depth;
2 reducer_max <int > max_depth;
3 /* ... */
4 void walk_s(Node *x)
5 {
6 switch (x->kind) {
7 case Node::LEAF:
8 max_depth = max(max_depth , depth);
9 break;

10 case Node:: INTERNAL:
11 ++depth;
12 cilk_spawn walk_s(x->left);
13 walk_s(x->right);
14 sync;
15 --depth;
16 break;
17 }
18 }

Figure 16: A Cilk++ program that determines the maximum depth of a
node in a binary tree using a reducer and a splitter.

cilk_spawn statement creates two new Cilk++ strands: the child
strand that is spawned, and the continuation strand that continues
in the parent after thecilk_spawn. Upon acilk_spawn:
• The child strand owns the viewC owned by the parent proce-

dure before thecilk_spawn.
• The continuation strand owns a new viewC′, initialized

nondeterministically to either the value ofC before the
cilk_spawn or the value ofC after the child returns from
thecilk_spawn.

Notice that in Figure 15, the value of thedepth is the same before
and after each call towalk() in lines 12–13. Thus, for the corre-
sponding parallel code in Figure 15(b), the nondeterministic sec-
ond condition above is actually deterministic, because the values
of depth before and after acilk_spawn are identical. Commonly,
a splitter obeys thesplitter consistency condition: when executed
serially, the splitter value exhibits no net change from immediately
before acilk_spawn to immediately after thecilk_spawn. That
is, if the spawned subcomputation changes the value of the splitter
during its execution, it must restore the value one way or another
before it returns.

Implementation of splitters
We now describe how to implement splitter hyperobjects. The main
idea is to keep ahypertreeof hypermaps. Accessing a splitterx
involves a search from the hypermap associated with the executing
frame up the hypertree until the value is found. Splitter hypermaps
support the following two basic operations:

• HYPERMAP-INSERT(h,x,v) — insert the key-value pair(x,v)
into the hypermaph.

• HYPERMAP-FIND(h,x) — look up the splitterx in the hy-
permaph, and return the value stored inh that is associated
with x, or returnNIL if the value is not found. Ifh = NIL (the
hypermap does not exist), signal an error.

The runtime data structures described in Section 4 can be be ex-
tended to support splitters. Recall that each worker owns a spawn
dequedeque implemented as an array, where each indexi stores a
call stack. The top and bottom of the deque are indexed by worker-
local variablesH and T , where array positioni contains a valid
pointer forH ≤ i < T . We augment each deque location to store a
pointerdeque[i] .h to a hypermap. Each workerworker also main-
tains anactive hypermapworker.h. In addition, we store aparent
h.parent pointer with each hypermaph, which points to the par-
ent hypermap in the hypertree (orNIL for the root of the hyper-
tree). Each hypermaph has two children, identified ash.spawn and
h.cont.

The runtime system executes certain operations at distinguished
points in the client program:
• when the user program accesses a splitter hyperobject,
• upon acilk_spawn,
• upon return from acilk_spawn, and
• upon a random steal.
We now describe the actions of the runtime system in these cases.

Each action is executed as if it is atomic, which can be enforced
through the use of a lock stored with the worker data structure.

Accessing a splitter. Accessing a splitter hyperobjectx in a
worker w can be accomplished by executing SPLITTER-LOOKUP
(w.h,x), where the SPLITTER-LOOKUP(h,x) function is imple-
mented by the following pseudocode:
• Sethiter = h.
• While (v = HYPERMAP-FIND(hiter,x)) == NIL :

• Sethiter = hiter .parent.
• If h 6= hiter, then HYPERMAP-INSERT(h,x,v).
This implementation can be optimized:

• For hypermaps in the deque, rather than followingparent
pointers in the search up the hypertree, the auxiliary point-
ers in hypermaps can be omitted and the search can walk up
the deque itself.

• After looking up a value in an ancestor hypermap, all inter-
mediate hypermaps between the active hypermap and the hy-
permap where the value was found can be populated with the
key-value pair.

Spawn. Let w be the worker that executescilk_spawn.
• Setparent = w.h, and createchild as a fresh empty hypermap.
• Setparent.spawn = child.
• Setparent.cont = NIL .
• Setchild.parent = parent.
• Pushparent onto the bottom ofw’s deque.
• Setw.h = child.
Return from a spawn. Let w be the worker that executes the

return statement. Letchild = w.h, and letparent = child.parent.
We have two cases to consider. If the deque is nonempty:
• For all keysx that are both inchild and parent, update the

value inparent to be the value inchild.
• Destroychild.
• Setw.h = parent.

If the deque is empty:
• Destroychild.
• For all keysx that are inparent but not inparent.cont, insert

the parent value intoparent.cont.
• Setw.h = parent.cont.
• Spliceparent out the hypertree.
• Destroyparent.

In either case, control resumes according to the “Return from a
spawn” description in Section 4.

Random steal. Recall that on a random steal, the thief worker
thief removes the topmost call stack from the victimvictim’s deque
victim.deque of the victim. Letlooth be the youngest hypermap on
victim’s deque.
• Create a fresh empty hypermaph.
• Seth.parent = looth.
• Setlooth.cont = h.
• Setthief .h = h.
This implementation copies a view when the splitter is accessed

(read or write), but it is also possible to implement a scheme which
copies a view only when it is written.



8 CONCLUSION

We conclude by exploring other useful types of hyperobjects be-
sides reducers, holders, and splitters. For all three types, the child
always receives the original view at acilk_spawn, but for parents,
there are two cases:

COPY: The parent receives a copy of the view.

IDENTITY: The parent receives a view initialized with an iden-
tity value.

The joining of views, which can happen at any strand boundary
before thecilk_sync, also provides two cases:

REDUCE: The child view is updated with the value of the par-
ent view according to a reducing function, the parent view is
discarded, and the parent view gets the view of the child.

IGNORE: The parent view is discarded, and the parent receives
the view of the child.

Of the four combinations, three are the hyperobjects we have dis-
cussed:

(IDENTITY, IGNORE): Holders.

(IDENTITY, REDUCE): Reducers.

(COPY, IGNORE): Splitters.

The last combination,(COPY, REDUCE), may also have some
utility, although we have not encountered a specific need for this
case in the real-world applications we have examined. We can
imagine a use in calculating the span of a computation, for example,
since the state variables for computing a longest path in a compu-
tation involve the behavior of both a splitter and a max-reducer.

There may also be other useful types of hyperobjects than the
four produced by this taxonomy.
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