
The Cache Complexity of

Multithreaded Cache Oblivious Algorithms

Matteo Frigo and Volker Strumpen∗

IBM Austin Research Laboratory

11501 Burnet Road, Austin, TX 78758

December 7, 2007

Abstract

We present a technique for analyzing the number of cache misses
incurred by multithreaded cache oblivious algorithms on an idealized
parallel machine in which each processor has a private cache. We
specialize this technique to computations executed by the Cilk work-
stealing scheduler on a machine with dag-consistent shared memory.
We show that a multithreaded cache oblivious matrix multiplication
incurs O(n3/

√
Z +(Pn)1/3n2) cache misses when executed by the Cilk

scheduler on a machine with P processors, each with a cache of size Z,
with high probability. This bound is tighter than previously published
bounds. We also present a new multithreaded cache oblivious algo-
rithm for 1D stencil computations incurring O(n2/Z + n +

√
Pn3+ǫ)

cache misses with high probability, one for Gaussian elimination and
back substitution, and one for the length computation part of the
longest common subsequence problem incurring O

(

n2/Z +
√

Pn3.58
)

cache misses with high probability.

1 Introduction

In this paper we derive bounds to the number of cache misses (the cache

complexity) incurred by a computation when executed by an idealized
parallel machine with multiple processors. We assume that the computa-
tion is multithreaded : The computation expresses a partial order on its
instructions, and a scheduler external to the computation maps pieces of the

∗This work was supported in part by the Defense Advanced Research Projects Agency
(DARPA) under contract No. NBCH30390004.

1

computation onto processors. The computation itself has no control over the
schedule. Our main focus is on analyzing the cache complexity of parallel
multithreaded cache oblivious algorithms [16], although, as a special case,
our bounds also apply to a sequential process migrated from one processor
to another by an operating system.

Past studies of the cache complexity have considered two complemen-
tary settings, each modeling different aspects of real machines. In the
distributed-cache model, each processor is connected to a private cache
that interacts somehow with the other caches to maintain a desired memory
model. In the shared-cache model, a single cache is common to all proces-
sors, which are also referred to as (hardware) threads. This paper focuses
on the distributed-cache model.

A multithreaded computation defines a partial execution order on its
instructions, which we view as a directed acyclic graph (dag) [1, 6, 9, 26].
The work T1 is the total number of nodes in the dag, and the critical

path T∞ is the length of a longest path in the dag. It is well-known that
these two parameters characterize the dag for scheduling purposes: the ex-
ecution time TP of the dag on P processors satisfies TP ≥ max(T1/P, T∞),
and a greedy scheduler [10, 21] matches this lower bound within a factor
of 2. A greedy scheduler is no longer asymptotically optimal when taking
cache effects into account, however, and the best choice of a scheduler de-
pends upon whether caches are distributed or shared. Roughly speaking,
on a shared cache, threads that use the same data should be scheduled
concurrently so as to maximize data reuse. On distributed caches, threads
that do not share data should be scheduled concurrently so as to minimize
inter-cache communication.

Multithreaded computations in the shared-cache model have been inves-
tigated by Blelloch and Gibbons [5] who proved a strong result: If the cache
complexity of a computation is Q1 on one processor with cache size Z1, then
a parallel schedule of the computation exists such that the cache complex-
ity QP on P processors satisfies QP ≤ Q1, assuming that the P processors
share a cache of slightly larger size ZP ≥ Z1 + PT∞. Blelloch and Gibbons
explicitly show a scheduler that achieves this bound.

The analysis of distributed caches is more involved. Acar et al. [1] con-
struct a family of dags with work Θ(n) and critical path Θ(lg n) whose cache
complexity is bounded by O(Z) on one processor with a cache of size Z, but it
explodes to Ω(n) when the dag is executed in parallel on distributed caches.
This result shows that a low cache complexity on one processor does not
imply a low cache complexity on multiple processors for general dags. For
series-parallel dags, however, more encouraging results are known. Blumofe

2

et al. [7] prove that the Cilk randomized work-stealing scheduler [9] executes
a series-parallel computation on P processors incurring

QP (Z) ≤ Q1(Z) + O(ZPT∞) (1)

cache misses with high probability, where Q1 is the number of cache misses in
a sequential execution and Z is the size of one processor’s cache. This bound
holds for a “dag-consistent” shared memory with LRU caches. Acar et al. [1]
prove a similar upper bound for race-free series-parallel computations under
more general memory models and cache replacement strategies, taking into
account the time of a cache miss and the time to steal a thread. The
bound in Eq. (1) diverges to infinity as the cache size increases, and is
actually tight for certain pathological series-parallel computations [1]. On
the other hand, as we show in this paper, Eq. (1) is not tight for those
“well-designed” programs whose sequential cache complexity decreases as
the cache size increases, including cache oblivious algorithms.

In this paper, we introduce the ideal distributed cache model for
parallel machines as an extension of the (sequential) ideal cache model [16],
and we give a technique for proving bounds stronger than Eq. (1) for cache
oblivious algorithms [16]. Our most general result (Theorem 1) has the fol-
lowing form. Consider the sequence of instructions of the computation in
program order (the trace). Assume that a parallel scheduler can be mod-
eled as partitioning the trace into S “segments” of consecutive instructions,
and that the scheduler assigns each segment to some processor. Cilk’s work-
stealing scheduler, for example, can be modeled in this way. Assume that
the cache complexity of any segment of the trace is bounded by a nonde-
creasing concave function f of the work of the segment. Then the cache
complexity of the parallel execution is at most Sf(T1/S). For the major-
ity of existing cache oblivious algorithms, the cache complexity is indeed
bounded by a concave function of the work, and therefore this analysis is
applicable.1 Furthermore, for the Cilk scheduler, the number of segments
is O(PT∞) with high probability, and thus we derive bounds to the cache
complexity in terms of the work T1, the critical path T∞, and the sequential
cache complexity.

1A trivial concave bound to the cache complexity always exists because the cache
complexity is always at most as large as the work, and this linear bound is by definition
concave. Our theory yields nontrivial results when the function is strictly concave, as is
the case for the algorithms presented in this paper, for the FFT and sorting problems [16],
for dynamic programming [11], etc., but not for problems such as matrix transposition
where each cached datum is reused Θ(1) times.

3

For example, a multithreaded program for multiplying two n × n ma-
trices without using additional storage has work T1 = O(n3), critical path
T∞ = O(n), and sequential cache complexity Q1 = O(n3/

√
Z + n2) [7].

When the program is executed on P processors by the Cilk scheduler, we
prove that its cache complexity is QP = O

(

n3/
√

Z +(T∞P)1/3n2
)

with high
probability. As another application, we present a new multithreaded cache
oblivious algorithm for stencil computations, derived from our sequential
algorithm [18]. Our one-dimensional stencil algorithm for a square space-
time region has T1 = O(n2), T∞ = O(n), and sequential cache complexity
Q1 = O(n2/Z + n). When executed on P processors by the Cilk scheduler,
the cache complexity is QP = O

(

n2/Z +n+
√

Pn3+ǫ
)

with high probability.
These bounds on the cache complexity allow a programmer to deter-

mine whether a program has sufficient temporal locality. If this is the case,
the programmer can ignore the issues of data distribution and communi-
cation schedules without suffering a performance penalty. For example,
matrix multiplication requires Ω

(

n3/
√

Z +n2) cache misses [24] irrespective
of the number of processors, and we prove that a simple recursive matrix
multiplication algorithm incurs O

(

n3/
√

Z + (nP)1/3n2
)

cache misses on P
processors under the randomized work-stealing scheduler. If n is so large
that the first term dominates the cache complexity, then any attempt to
carefully orchestrate the communication schedule—which typically leads to
complicated message-passing programs—would only yield incremental gains
in the negligible second term. Thus, for large n or, equivalently, small P ,
one can achieve near-optimal performance with a simple program.

The remainder of this article is structured as follows. In Section 2 we
present the ideal distributed cache model. In Section 3, we analyze the cache
complexity of multithreaded computations on a machine with an ideal dis-
tributed cache. Then, in Section 4, we apply our cache complexity bounds to
the analysis of multithreaded, cache oblivious programs for matrix multipli-
cation, stencil computations, Gaussian elimination and back substitution,
and for the length computation part of the longest common subsequence
problem.

2 The Ideal Distributed Cache Model

In this section, we introduce the ideal distributed cache model for par-
allel machines as an extension of the ideal (sequential) cache model [16].

An ideal distributed-cache machine has a two-level memory hierarchy.
The machine consists of P processors, each equipped with a private ideal

4

cache connected to an arbitrarily large shared main memory. An ideal

cache is fully associative and it implements the optimal off-line strategy of
replacing the cache line whose next access is farthest in the future [2]; see
[16, 27] for a justification of this assumption.

Each private cache contains Z words (the cache size), and it is parti-
tioned into cache lines consisting of L consecutive words (the line size)
that are treated as atomic units of transfers between cache and main mem-
ory.

A processor can only access data in its private cache. If an accessed
datum is not available in the cache, the processor incurs a cache miss to
bring the data from main memory into its cache.

The number of cache misses incurred by a computation running on a
processor depends on the initial state of the cache. The cache complex-

ity Q of a computation is defined as the number of cache misses incurred
by the computation on an ideal cache starting and ending with an empty
cache.

The ideal distributed cache model assumes that the private caches are
noninterfering : the number of cache misses incurred by one processor can
be analyzed independently of the actions of other processors in the system.
Whether this assumption is true in practice depends on the consistency
model maintained by the caches. For example, caches are noninterfering in
the dag-consistent memory model maintained by the Backer protocol [7].
Alternatively, caches are noninterfering in the HSMS model [1] if the com-
putation is race-free.

Our ideal distributed cache model is almost the same as the dag-consistent
model analyzed by Blumofe et al. [7], except that we assume ideal caches in-
stead of caches with LRU replacement. Bender et al. [3] consider a distributed-
cache model, but with cache coherence and atomic operations. This model is
harder to analyze than ours but it supports lock-free algorithms that are not
possible with noninterfering caches. The shared ideal cache model of Blelloch
and Gibbons [5] features an ideal cache which, unlike in our model, is shared
by all processors. Like the PRAM [15] and its variants, the ideal distributed
cache model aims at supporting a shared-memory programming model. Un-
like the lock-step synchronous PRAM, and unlike bulk-synchronous models
such as BSP [30] and LogP [14], our model is asynchronous, and processors
operate independently most of the time. Like in the QSM model [19], each
processor in our model features a private memory, but the QSM manages this
private memory explicitly in software as part of each application, whereas
we envision an automatically managed cache with hardware support.

5

3 The Cache Complexity of Multithreaded Com-

putations

In this section, we prove bounds on the cache complexity of a multithreaded
computation in terms of its sequential cache complexity, assuming an ideal
distributed-cache machine. Specifically, Theorem 1 bounds the cache com-
plexity of a multithreaded computation assuming a “generic” scheduler.
Theorem 2 refines the analysis in the case of the Cilk work-stealing sched-
uler. Finally, Theorem 5 gives a technical result that simplifies the analysis
of the cache complexity of divide-and-conquer computations.

Let the trace of a multithreaded computation be the sequence of the
computation’s instructions in some order consistent with the partial order
defined by the multithreaded computation. Let a segment be a subsequence
of consecutive instructions of the trace. We denote with |A| the length of
segment A, and with Q(A) the number of cache misses incurred by the
execution of segment A on an ideal cache that is empty at the beginning
and at the end of the segment.

We assume that the computation is executed in parallel by a scheduler
whose operation can be modeled as partitioning the trace into segments
and assigning segments to processors. For each segment assigned to it, a
processor executes the segment fully, and then proceeds to the execution of
the next segment. When completing a segment, we assume that a processor
completely invalidates and flushes its own cache (but not other caches), and
we count the cache misses incurred by these actions as part of the parallel
cache complexity. This technical assumption makes our upper-bound proofs
easier; a real scheduler may apply optimizations to avoid redundant flushes.
For correctness of the parallel execution, the scheduler must ensure that
the assignment of segments to processors respects the data dependencies
of the multithreaded computation, but our analysis holds for all partitions,
including incorrect ones.

Recall that a function f(x) is concave if αf(x0)+(1−α)f(x1) ≤ f(αx0+
(1 − α)x1) holds for 0 ≤ α ≤ 1, for all x0 and x1 in the domain of f . For a
concave function f and integer S ≥ 1, Jensen’s inequality holds:

∑

0≤i<S

f(xi)/S ≤ f

∑

0≤i<S

xi/S

 .

Our first result relates the parallel cache complexity to the sequential
cache complexity and the number of segments.

6

Theorem 1 Let M be a trace of a multithreaded computation. Assume
that a scheduler partitions M into S segments and executes the segments on
an ideal distributed-cache machine. Let f be a concave function such that
Q(A) ≤ f(|A|) holds for all segments A of M.

Then, the total number QP (M) of cache misses incurred by the parallel
execution of the trace is bounded by

QP (M) ≤ S · f(|M|/S) .

Proof: Let Ai, 0 ≤ i < S be the segments generated by the sched-
uler. Because we assume that the scheduler executes a segment start-
ing and ending with an empty cache, and because caches do not inter-
fere with each other in the ideal-cache model, the parallel execution in-
curs exactly QP (M) =

∑

0≤i<S Q(Ai) cache misses. By assumption, we
have

∑

0≤i<S Q(Ai) ≤
∑

0≤i<S f(|Ai|). By Jensen’s inequality we have
∑

0≤i<S f(|Ai|) ≤ Sf
(

∑

0≤i<S |Ai|/S
)

= Sf(|M|/S), and the theorem

follows. Q.E.D.
Because a segment incurs at most as many cache misses as its number of

memory accesses, Theorem 1 can always be applied trivially with f(x) = x.
Theorem 1 becomes useful when we can find nontrivial concave functions,
as in the examples in Section 4.

We now analyze the cache complexity of multithreaded Cilk [8, 17] pro-
grams assuming a dag-consistent shared memory [7]. Cilk extends the C lan-
guage with fork/join parallelism managed automatically by a provably good
work-stealing scheduler [9]. In general, a Cilk procedure is allowed to exe-
cute one of three actions: (1) execute sequential C code; (2) spawn a new
procedure; or (3) wait until all procedures previously spawned by the same
procedure have terminated. The latter operation is called a “sync”. When
a parent procedure spawns a child procedure, Cilk suspends the parent,
makes it available to be “stolen” by another processor, and begins work on
the child. When a processor returns from a child procedure, it resumes work
on the parent if possible, or otherwise the processor becomes idle. An idle
processor attempts to steal work from another, randomly selected proces-
sor. A procedure executing a sync may block, in which case the processor
executing the procedure suspends it and starts stealing work.

The execution of a Cilk program can be viewed as a dag of dependen-
cies among instructions. Whenever the dag contains an edge from node u
to a node v executing on a different processor, the Backer protocol [7] in-
serts the following actions to enforce dag-consistent memory. The processor
executing u, after executing it, writes all dirty locations in its cache back

7

to main memory. The processor executing v, before executing it but after
the write back succeeding u, flushes and invalidates its cache and resumes
with an empty cache. In terms of the Cilk source program, Backer can be
viewed as inserting memory consistency actions in two places: (1) after a
spawn at which a procedure is stolen, and (2) before the sync that waits for
such a spawn to complete (the sync associated with the steal). If we view
each processor as working on a segment, then a steal breaks the segment
into four parts such that the noninterference assumption holds within each
part: (1) the portion of the segment executed by the victim before the steal;
(2) the portion of the segment executed by the victim after the steal; (3) the
portion of the segment executed by the thief before the sync associated with
the steal; and (4) the portion of the segment executed by the thief after
the sync associated with the steal. Thus, each steal operation increases the
number of segments by three. Combining this insight with Theorem 1 and
the upper bounds of Acar et al. [1], we obtain the following theorem.

Theorem 2 (Cilk cache complexity) Consider a Cilk computation with
work T1 and critical path T∞, executed on an ideal distributed-cache machine
with memory consistency maintained by the Backer protocol. Assume that
a cache miss and a steal operation take constant time. Let f be a concave
function such that Q(A) ≤ f(|A|) holds for all segments A of the trace of
the computation.

Then, the parallel execution on P processors incurs

QP = O(S · f(T1/S)) (2a)

cache misses, where with high probability

S = O(PT∞) . (2b)

Proof: Acar et al. [1, Lemma 16] prove that the Cilk scheduler executes
O(⌈m/s⌉PT∞) steals with high probability, where m is the time for a cache
miss and s is the time for a steal. Their proof depends neither on the cache
replacement policy nor on the memory model. By assumption, ⌈m/s⌉ =
Θ(1) and we hide these parameters in the O-notation from now on. Each
steal creates three segments, and therefore the number of segments is S =
O(PT∞) with high probability, proving Eq. (2b).

The length of the trace is the same as the work T1. Caches maintained
by Backer are noninterfering within each segment and therefore Theorem 1
applies, proving Eq. (2a). Q.E.D.

8

While we derived Theorem 2 for Cilk with dag-consistent shared memory,
we could have applied the same analysis to race-free computations in the
HSMS model of Acar et al. [1], obtaining the same bound.

In order to apply Theorems 1 and 2, one must prove a bound on the
number of cache misses incurred by each of the unique segments of trace M,
which is hard to do in general. For example, consider a divide-and-conquer
computation that recursively solves a problem of size n by reducing it to
problems of size n/r. One can prove bounds on the cache complexity by
induction on complete subtrees of the recursion tree, but this proof technique
does not work for segments that do not correspond to complete subtrees.

To aid these proofs, we now prove Theorem 5 below, which bounds the
cache complexity of an arbitrary segment in terms of the cache complexity
of a subset of recursively nested segments. We call such a subset a recursive
decomposition of the trace. In a divide-and-conquer computation, segments
in the recursive decomposition would correspond to complete subtrees of the
recursion tree. Then, Theorem 5 extends a bound on complete subtrees to
a bound valid for all segments.

Definition 3 (Recursive segment decomposition) Let A be a segment
and r ≥ 2 be an integer. A r-recursive decomposition of A is any set R
of subsegments of A produced by the following nondeterministic algorithm:

If |A| = 1, then R = {A}.

If |A| > 1, choose integer q ≥ 2 and segments A1, A2, . . ., Aq whose con-
catenation yields A, such that |Ai| ≥ |A|/r. Let Ri be a r-recursive
decomposition of Ai. Then R = {A} ∪R1 ∪R2 . . .∪Rr. We say that
segment A is the parent of the segments Ai.

Before proving Theorem 5, we state a rather obvious property of ideal
caches.

Lemma 4 (Monotonicity of an ideal cache) Let A and B be segments
of a trace with B ⊂ A. Then Q(B) ≤ Q(A).

Proof: Execute B on a cache that incurs exactly the same cache misses as an
optimal execution of A, in the same order. In this case, execution of B incurs
exactly Q(A) cache misses. An optimal replacement policy for B incurs at
most as many cache misses as the policy that we have just discussed. Q.E.D.

9

Theorem 5 Let R be a r-recursive decomposition of trace M. Let f be a
nondecreasing function such that Q(A) ≤ f(|A|) for all A ∈ R. Then, for
all segments A of M (not only those in R) we have Q(A) ≤ 2f(r |A|).

Proof: We prove that A is included in the concatenation of at most two
segments in R of length at most r|A|. The theorem then follows from
Lemma 4.

Let B be the smallest segment in R that includes A. Such a segment
exists because the entire trace M ∈ R.

If a child B′ ∈ R of B exists that is included in A, then |B|/r ≤ |B′| ≤ |A|.
By Lemma 4 we have Q(A) ≤ Q(B) ≤ f(|B|) ≤ f(r |A|) ≤ 2f(r |A|) and we
are done.

Otherwise, two consecutive children B′ and B′′ of B exist in R such that
A is included in the concatenation of B′ and B′′. Let A′ = A ∩ B′ and
A′′ = A ∩ B′′. Then, by construction, A′ is a suffix of B′ and A′′ is a prefix
of B′′.

We now prove that Q(A′) ≤ f(r |A′|). Let C′ be the smallest segment
in R that includes A′. If A′ is empty or A′ = C′, then Q(A′) ≤ f(|A′|) ≤
f(r |A′|). Otherwise, a child of C′ exists in R. By construction, A′ is a suffix
of C′, and therefore the rightmost child D′ of C′ is included in A′. Therefore,
we have |C′|/r ≤ |D′| ≤ |A′|. By Lemma 4, we have Q(A′) ≤ Q(C′) ≤
f(|C′|) ≤ f(r |A′|), as claimed.

A symmetric argument, substituting “prefix” for “suffix,” proves that
Q(A′′) ≤ f(r |A′′|).

By Lemma 4, we have Q(A) ≤ Q(A′) + Q(A′′) ≤ f(r |A′|) + f(r |A′′|).
By monotonicity of f , we conclude that Q(A) ≤ 2f(r |A|) and the theorem
is proven. Q.E.D.

By combining Theorems 2 and 5, we obtain the following bound on the
parallel cache complexity in terms of the number of segments and of the
sequential cache complexity of a recursive decomposition.

Corollary 6 Let R be a r-recursive decomposition of trace M. Let f be
a nondecreasing concave function such that Q(A) ≤ f(|A|) for all A ∈ R.
Assume a Cilk scheduler with Backer as in Theorem 2.

Then, the total number QP (M) of cache misses incurred by the parallel
execution of the trace on P processors is

QP = O(S · f(rT1/S))

cache misses, where, with high probability,

S = O(PT∞) .

10

Proof: Let g(x) = 2f(rx). Then, g is concave. By Theorem 5, we have
Q(A) ≤ g(|A|) for all segments A of M. The corollary then follows from
Theorem 2. Q.E.D.

Remark: If Sf(rT1/S) happens to be a concave function of S, then the
bounds hold in expectation as well, because then we have E[Sf(rT1/S)] ≤
E[S]f(rT1/E[S])], and E[S] = O(PT∞) holds [1].

4 Applications

In this section, we apply Corollary 6 to the analysis of parallel cache oblivious
algorithms for matrix multiplication, stencil computations, a linear system
solver, and longest common subsequence computations. All applications are
programmed in Cilk [17]. A similar analysis could be applied to suitable
parallelizations of other cache oblivious algorithms.

4.1 Matrix Multiplication

Fig. 1 shows the pseudo code of multithreaded procedure matmul for multi-
plying two n×n matrices for n = 2k [7]. This procedure executes T1 = O(n3)
work and its critical path is T∞ = O(n).2

If we ignore the spawn annotations and the sync statements, we obtain
a special case of the sequential cache oblivious matrix multiplication algo-
rithm, which incurs Q(n, Z, L) = O

(

n3/(L
√

Z)+n2/L+1
)

cache misses [16]
when executing on one processor with an ideal cache of size Z and cache
line size L, assuming a “tall” cache with Z = Ω(L2). This cache complexity
is asymptotically optimal [24].

The trace of procedure matmul admits a simple 8-recursive decomposi-
tion comprising all segments that compute a complete subtree of the call
tree. Moreover, the analysis of the sequential case applies to each complete
subtree. Hence, on our ideal distributed-cache machine, each subtree that
multiplies n × n matrices incurs O

(

n3/(L
√

Z) + n2/L + 1
)

cache misses.
To apply Corollary 6, we must find a concave function f that bounds the

number of cache misses Q as a function of a segment’s length, for all seg-
ments in the recursive decomposition. Consider a segment in the recursive
decomposition that multiplies n×n matrices. Ignoring constant factors, let

2A shorter critical path is possible at the expense of additional storage if addition
is associative; see [7].

11

cilk void matmul(n, A, B, C)

{

if (n == 1) {

C += A * B;

} else {

spawn matmul(n/2, A11, B11, C11);

spawn matmul(n/2, A11, B12, C12);

spawn matmul(n/2, A21, B11, C21);

spawn matmul(n/2, A21, B12, C22);

sync;

spawn matmul(n/2, A12, B21, C11);

spawn matmul(n/2, A12, B22, C12);

spawn matmul(n/2, A22, B21, C21);

spawn matmul(n/2, A22, B22, C22);

}

}

Figure 1: Cilk pseudo code for computing C = C +AB, where A, B, and C
are n×n matrices. The code for partitioning each matrix into four quadrants
is not shown. The spawn keyword declares that the spawned procedure may
be executed in parallel with the procedure that executes the spawn. A sync

statement waits until all procedures spawned by the current procedure have
terminated. Cilk implicitly sync’s before returning from a procedure.

w = n3 be the length of the segment. Then Q ≤ f(w) for some concave
function f(w) ∈ O

(

w/(L
√

Z) + w2/3/L + 1
)

.
Since f is concave, we obtain the cache complexity of a parallel execution

of matmul by Corollary 6 as

QP (n, Z, L) = O
(

n3/(L
√

Z) + S1/3n2/L + S
)

, (4)

where S = O(Pn) with high probability.

Comparison With Previous Bounds. Assume now for simplicity that
L = Θ(1). The sequential cache complexity is Q(n, Z, L) = O(n3/

√
Z + n2)

and the Cilk cache complexity is

QP (n, Z) = O
(

n3/
√

Z + (Pn)1/3n2
)

. (5)

How does the “new” bound Eq. (5) compare to the “old” bound

QP (n, Z) = O
(

n3/
√

Z + ZPn
)

(6)

12

that was derived by Blumofe et al. [7]? As Z → ∞, Eq. (5) remains
bounded, whereas Eq. (6) diverges, and thus the new bound is asymp-
totically tighter than the old bound for some values of the parameters.
If n3/

√
Z ≥ (Pn)1/3n2, then the new bound is O(n3/

√
Z) and the old

bound is Ω(n3/
√

Z), and therefore the old bound is not tighter than the new
one. Otherwise, we have n3/

√
Z ≤ (Pn)1/3n2, and thus

√
Z ≥ (Pn)−1/3n,

from which ZPn ≥ (Pn)1/3n2 follows. Consequently, the new bound is
O((Pn)1/3n2), whereas the old bound is Ω(ZPn) = Ω((Pn)1/3n2), and
therefore the old bound is not tighter than the new one in this case either.
Thus, we conclude that the new bound strictly subsumes the old bound.

4.2 1D Parallel Stencil Algorithm

In this section, we present a parallel cache oblivious algorithm for stencil
computations, derived from our sequential cache oblivious algorithm [18],
and we analyze its cache complexity in the ideal cache model. Bilardi and
Preparata [4] analyze a more complicated parallel cache oblivious stencil
algorithm in a limiting technology where signal propagation at the speed of
light is the primary performance bottleneck.

A stencil defines the computation of an element in an n-dimensional
spatial grid at time t as a function of neighboring grid elements at time t−
1, . . . , t − k. The n-dimensional grid plus the time dimension span an
(n + 1)-dimensional spacetime . For brevity we restrict our discussion to
one-dimensional stencils. The algorithm can be extended to stencils with
arbitrary dimensions as discussed in [18].

Our parallel, cache oblivious stencil algorithm applies to in place com-
putations that store only a bounded number of spacetime points for each
space position, as opposed to storing the entire spacetime. For example, the
sequential, non cache oblivious program in Fig. 2 computes (t1−t0)(x1−x0)
spacetime points using only 2(x1 − x0) memory locations. We call a multi-
dimensional array, such as u[2][N] in Fig. 2, with two places to store two
versions of each value a toggle array .3 Most stencil computations used in
practice are in place, predominantly employ variants of toggle arrays, and
therefore this restriction is not serious. Reusing storage is necessary to ben-
efit from a cache: A stencil computation that did not reuse storage would
incur a number of cache misses proportional to the size of the spacetime
irrespective of the cache size.

3Other in-place storage schemes are possible [28].

13

double u[2][N];

void kernel(int t, int x)
{

u[(t+1)%2][x] = f(u[t%2][x-1], u[t%2][x], u[t%2][x+1]);
}

void iter(int t0, int t1, int x0, int x1)

{

int t, x;
for (t = t0; t < t1; t++)

for (x = x0; x < x1; x++)
kernel(t, x);

}

Figure 2: Sequential C program that implements a 3-point stencil compu-
tation. The program computes all spacetime points (t, x) in the rectangle
t0 ≤ t < t1, x0 ≤ x < x1, where point (t + 1, x) depends upon points
(t, x − 1), (t, x), and (t, x + 1). The exact dependency is determined by a
function f, not shown. The program is in place: It does not store all space-
time points in separate memory locations, but it reuses the same location
for multiple spacetime points. Specifically, the program stores point (t, x) in
array position u[t mod 2][x]. Reusing storage is necessary to benefit from
a cache. (The C syntax a%b denotes the remainder of a divided by b.)

4.2.1 Description of the 1D Stencil Algorithm

Procedure walk1 in Fig. 6 visits all points (t, x) in a rectangular spacetime
region, where 0 ≤ t < T , 0 ≤ x < N , and t and x are integers. The
procedure visits point (t + 1, x) after visiting points (t, x + k) for |k| ≤ σ,
where σ ≥ 1 (the slope) is an integer sufficiently large to ensure that the
procedure respects the dependencies imposed by the stencil.4 For example,
a suitable slope for for a 3-point stencil is σ = 1, because spacetime point
(t + 1, x) depends upon points (t, x − 1), (t, x), and (t, x + 1).

Although we are ultimately interested in traversing rectangular space-
time regions, the procedure operates on more general trapezoidal regions
such as the one shown in Fig. 3. For integers t0, t1, x0, ẋ0, x1, and ẋ1,
we define the trapezoid T (t0, t1, x0, ẋ0, x1, ẋ1) to be the set of integer pairs
(t, x) such that t0 ≤ t < t1 and x0 + ẋ0(t − t0) ≤ x < x1 + ẋ1(t − t0). (We
use the Newtonian notation ẋ = dx/dt.) The height of the trapezoid is

4It is possible to modify our algorithm to work for σ = 0, although it is always
safe to choose a value of σ larger than strictly necessary.

14

x0 x1

t0

t1

x

t
w

h

Figure 3: Illustration of the trapezoid T (t0, t1, x0, ẋ0, x1, ẋ1) for ẋ0 = 1 and
ẋ1 = −1. The trapezoid includes all points in the shaded region, except for
those on the top and right edges.

h = t1 − t0, and we define the width to be the average of the lengths of the
two parallel sides, i.e. w = (x1−x0)+(ẋ1−ẋ0)h/2. The center of the trape-
zoid is point (t, x), where t = (t0 + t1)/2 and x = (x0 +x1)/2+(ẋ0 + ẋ1)h/4
(i.e., the average of the four corners). The area of the trapezoid is the
number of points in the trapezoid. We only consider well-defined trape-

zoids, for which these three conditions hold: t1 ≥ t0, x1 ≥ x0, and
x1 + h · ẋ1 ≥ x0 + h · ẋ0.

Procedure walk1 decomposes T recursively into smaller trapezoids, ac-
cording to the following rules.

Parallel space cut: Whenever possible, the procedure executes a parallel
space cut, decomposing T into into r “black” trapezoids and some
number of “gray” trapezoids, as illustrated in Fig. 4. The procedure
spawns the black trapezoids in parallel, waits for all of them to com-
plete, and then spawns the gray trapezoids in parallel. Such an exe-
cution order is correct because the procedure operates the cut so that
(1) points in different black trapezoids are independent of each other,
(2) points in different gray trapezoids are independent of each other,
and (3) points in a black trapezoid do not depend on points in a gray
trapezoid.

The base of each black trapezoid has length l = ⌊(x1 − x0)/r⌋, except
for the rightmost one, which may be larger because of rounding. A
black trapezoid has the form T (t0, t1, x, σ, x + l,−σ). Slope σ of the
edges is necessary to guarantee that a point in a black trapezoid does

15

t

t1

t0

x1x0 l
x

h

Figure 4: Illustration of a parallel space cut. The black trapezoids are inde-
pendent of each other and can be visited in parallel. Once these trapezoids
have been visited, the gray trapezoids can in turn be visited in parallel.

not depend on points in a gray trapezoid. A black trapezoid is well-
defined only if the condition l ≥ 2σh holds, or else the trapezoid would
be self-intersecting. Therefore, r black trapezoids fit into T only if
x1 − x0 ≥ 2rσh, which is the condition for the applicability of the
parallel space cut.

The procedure always generates r + 1 gray trapezoids, of which r − 1
are located between black trapezoids, as in Fig. 4, and two are located
at the left and right edges of T . In Fig. 4, the trapezoids at the edges
happen to be have zero area. The gray trapezoids in the middle are
in fact triangles of the form T (t0, t1, x,−σ, x, σ).

We leave the constant r unspecified for now. The choice of r involves
a tradeoff between the critical path and the cache complexity, which
we analyze in Section 4.2.2.

Time cut: If h > 1 and the parallel space cut is not applicable, procedure
walk1 cuts the trapezoid along the horizontal line through the center,
as illustrated in Fig. 5. The recursion first traverses trapezoid T1 =
T (t0, t0 + s, x0, ẋ0, x1, ẋ1), and then trapezoid T2 = T (t0 + s, t1, x0 +
ẋ0s, ẋ0, x1 + ẋ1s, ẋ1), where s = ⌊h/2⌋.

Base case: If h = 1, then T consists of the line of spacetime points (t0, x)
with x0 ≤ x < x1. The base case visits these points, calling the
application-specific procedure kernel for each of them. The traversal
order is immaterial because these points are independent of each other.

The work (sequential execution time) of procedure walk1, when travers-
ing a trapezoid, is proportional to the trapezoid’s area, i.e., T1 = Θ(wh)
where w is the width of the trapezoid and h is its height. This fact is

16

t

x

T1

T2

Figure 5: Illustration of a time cut. The algorithm cuts the trapezoid along
the horizontal line through its center, it recursively visits T1, and then it
visits T2.

not completely obvious because the procedure may spawn up to two empty
gray trapezoids in case of a space cut, and the procedure needs noncon-
stant Θ(h) time to execute an empty trapezoid of height h. This addi-
tional work is asymptotically negligible, however. Procedure walk1 obeys
the bound T1(w, h) ≤ 2rT1(w/(2r), h) + O(h) in case of a space cut, and
bound T1(w, h) ≤ 2T1(w, h/2) + O(1) in case of a time cut. One can verify
by induction that T1(w, h) ≤ c(wh − w − h) holds for some constant c and
sufficiently large w and h. Alternatively, one can modify the procedure to
test for empty trapezoids at the beginning, thus avoiding this problem alto-
gether, but we prefer to keep the code simple even if the analysis becomes
slightly harder.

We conclude this section with the analysis of the critical path length of
walk1.

Theorem 7 The critical path of walk1 when visiting trapezoid T is

T∞(T) = O
(

σrhw1/ lg(2(r−1))
)

,

where h is the height of T , w is its width, σ is the slope of the stencil, and
r is the number of black trapezoids created by the procedure in the space-cut
case.

Proof: To avoid cluttering the proof with the O-notation, assume that a
call to the kernel procedure and a spawn cost at most one unit of critical
path. Furthermore, let α = 1/ lg(2(r − 1)) for brevity. Because procedure
walk1 uses r ≥ 2 to spawn at least two threads in the space cut, we have
α ≤ 1.

17

0 const int σ; /* assert(σ >= 1) */

1 const int r; /* assert(r >= 2) */

2 cilk void walk1(int t0, int t1, int x0, int ẋ0, int x1, int ẋ1)

3 {

4 int h = t1 - t0, ∆x = x1 - x0;

5 int x, i;

6 if (h >= 1 && ∆x >= 2 * σ * h * r) { /* parallel space cut */

7 int l = ∆x / r; /* base of a black trapezoid, rounded down */

8 for (i = 0; i < r - 1; ++i)
9 spawn walk1(t0, t1, x0 + i * l, σ, x0 + (i+1) * l, -σ);

10 spawn walk1(t0, t1, x0 + i * l, σ, x1, -σ);

11 sync;

12 spawn walk1(t0, t1, x0, ẋ0, x0, σ);
13 for (i = 1; i < r; ++i)
14 spawn walk1(t0, t1, x0 + i * l, -σ, x0 + i * l, σ);
15 spawn walk1(t0, t1, x1, -σ, x1, ẋ1);

16 } else if (h > 1) { /* time cut */

17 int s = h / 2;

18 spawn walk1(t0, t0 + s, x0, ẋ0, x1, ẋ1);

19 sync;

20 spawn walk1(t0 + s, t1, x0 + ẋ0 * s, ẋ0, x1 + ẋ1 * s, ẋ1);

21 } else if (h == 1) { /* base case */

22 for (x = x0; x < x1; ++x)
23 kernel(t0, x);
24 }

25 }

Figure 6: One-dimensional parallel stencil algorithm implemented in the
Cilk language. The procedure is parametrized by two integers σ and r,
whose meaning is described in the text. In lines 8–10, we spawn r black
trapezoids. Because of the rounding of l in line 7, the length of the base of
the last trapezoid is not necessarily l, and we handle this trapezoid separately
in line 10. The sync statement in line 11 waits for the black trapezoids to
complete, before spawning the gray trapezoids in lines 12–15.

18

We now prove that

T∞(h, w) ≤ 2σr(2wαh − 1) (7)

by induction on the area of the trapezoid.

Base case: If h = 1 and 1 ≤ w < 2σr, then the procedure enters its base
case with a critical path T∞(h, w) = w ≤ 2σr ≤ 2σr(2wα − 1), and Eq. (7)
holds.

Inductive step: Otherwise, the procedure recursively cuts the trapezoid
into strictly smaller trapezoids for which we assume inductively that Eq. (7)
holds. Depending on whether the procedure executes a time cut or a parallel
space cut, we distinguish two cases.

Time cut: If the procedure executes a time cut, we have

T∞(h, w) ≤ T∞(h/2, w1) + T∞(h/2, w2) + 1 ,

where w1 and w2 are the widths of the two trapezoids produced by the cut.
By inductive hypothesis, we have

T∞(h/2, wi) ≤ 2σr(2wα
i h/2 − 1) .

Since α ≤ 1 holds, wα is a concave function of w. By Jensen’s inequality,
we have wα

1 + wα
2 ≤ 2((w1 + w2)/2)α = 2wα. Consequently, the following

inequalities hold:

T∞(h, w) ≤ 2σr(2wα
1 h/2 − 1) + 2σr(2wα

2 h/2 − 1) + 1

≤ 2σr ((wα
1 + wα

2)h − 2) + 1

≤ 2σr(2wαh − 2) + 1

≤ 2σr(2wαh − 1) ,

thereby proving Eq. (7) in the time-cut case.

Space cut: If the procedure executes a parallel space cut, it generates at
least r − 1 gray trapezoids of width wg = σh, and r black trapezoids of
width wb. The critical path is the sum of the critical paths of one black
and one gray trapezoid, plus an additional critical path 2r for spawning the
recursive subproblems. Therefore, we have

T∞(h, w) ≤ T∞(h, wb) + T∞(h, wg) + 2r .

19

The sum of the widths of the black trapezoids is at most w − (r − 1)wg,
and therefore we have

wb ≤ (w − (r − 1)wg)/r

≤ (w − (r − 1)wg)/(r − 1)

≤ w/(r − 1) − wg .

Consequently, we have

T∞(h, w) ≤ T∞(h, wb) + T∞(h, wg) + 2r

≤ 2σr(2(wα
b + wα

g)h − 2) + 2r

≤ 2σr(2((w/(r − 1) − wg)
α + wα

g)h − 2) + 2r .

Again by Jensen’s inequality, we have

(w/(r − 1) − wg)
α + wα

g ≤ 2 (w/(2(r − 1)))α = wα ,

from which we conclude that

T∞(h, w) ≤ 2σr(2wαh − 2) + 2r

≤ 2σr(2wαh − 1) .

Since Eq. (7) holds in the base case, in the time-cut case, and in the space-cut
case, the theorem follows by induction. Q.E.D.

4.2.2 Cache Complexity of the 1D Stencil Algorithm

We now analyze the cache complexity of our parallel stencil procedure walk1.
We assume an ideal cache with line size L = Θ(1), because a general line
size only complicates the analysis without yielding further insights. The
analysis depends on two geometric invariants which we now state.

Lemma 8 (Aspect ratio) If procedure walk1 traverses a trapezoid of height h0,
then for each subtrapezoid of height h and width w created by the procedure,
the invariant h ≥ min(h0, w/(4σ(r + 1))) holds, where σ is the slope of the
stencil and r is the number of black trapezoids created by the procedure in
the space-cut case.

Proof: The proof is by induction on the number of cuts required to produce
a subtrapezoid. The invariant holds by definition of h0 at the beginning of
the execution. The base case produces no subtrapezoids, and therefore it

20

trivially preserves the invariant. A parallel space cut does not change h and
does not increase w, thus preserving the invariant. In the time-cut case,
∆x = x1 − x0 ≤ 2σrh holds by construction of the procedure. Because
|ẋi| ≤ σ, we have w ≤ ∆x + σh. The time cut produces trapezoids of
height h′ = h/2 and width w′ ≤ w + σh ≤ ∆x + 2σh ≤ 2σ(r + 1)h. Thus, a
time cut preserves the invariant, and the lemma is proven. Q.E.D.

Lemma 9 (Aspect ratio after space cuts) If procedure walk1 traverses
a trapezoid of height h0, then each space cut produces trapezoids of height h
and width w with h ≥ min(h0, Ω(w/σ)), where σ is the slope of the stencil .
The constant hidden in the Ω-notation does not depend upon the parameter r
of the procedure.

Proof: Before applying a space cut to a trapezoid of width w and height h,
Lemma 8 holds. The space cut produces trapezoids of width w′ = Θ(w/r)
and of the same height h, and therefore we have h ≥ min(h0, Ω(w′/σ)).
Q.E.D.

Theorem 10 (Sequential cache complexity) Let procedure walk1 tra-
verse a trapezoid of height h0 on a single processor with an ideal cache of
size Z and line size L = Θ(1). Then each subtrapezoid T of height h and
width w generated by walk1 incurs at most

O

(

wh

Z/(σr)
+

wh

h0
+ w

)

cache misses, where σ is the slope of the stencil and r is the number of black
trapezoids created by the procedure in the space-cut case.

Proof: Let W be the maximum integer such that the working set of any
trapezoid of width W fits into the cache. We have W = Θ(Z).

If w ≤ W , then the procedure incurs O(w) cache misses to read and
write the working set once, and the theorem is proven.

If w > W , consider the set of maximal subtrapezoids of width at most
W generated by the procedure while traversing T . These trapezoids are
generated either by a space cut or by a time cut. Trapezoids generated by
a time cut have width w′ = Ω(W) and height h′ = Ω

(

min(h0, w
′/(σr))

)

by
Lemma 8. Trapezoids generated by a space cut have width w′ = Ω(W/r)
and height h′ = Ω

(

min(h0, w
′/σ))

)

by Lemma 9. In either case, we have
h′ = Ω

(

min(h0, W/(σr))
)

= Ω
(

min(h0, Z/(σr))
)

.
Execution of each maximal subproblem visits w′h′ spacetime points in-

curring O(w′) cache misses. Hence, the ratio of useful work to cache misses

21

for the execution of the subproblem is h′ = Ω
(

min(h0, Z/(σr))
)

. Thus, the
same ratio holds for the entire execution of T which, therefore, incurs at
most

wh

Ω
(

min(h0, Z/(σr))
)

cache misses, from which the theorem follows. Q.E.D.
We are now ready to analyze the parallel cache complexity of our cache

oblivious stencil algorithm. We first derive the sequential cache complexity
of a trapezoid in terms of its area A, which is proportional to the work of the
trapezoid. Since the cache complexity turns out to be a concave function of
the work, we can then derive the Cilk cache complexity from Corollary 6.

Lemma 11 Let procedure walk1 traverse a trapezoid of height h0 on a single
processor with an ideal cache of size Z and line size L = Θ(1). Then each
subtrapezoid T of area A generated by walk1 incurs at most

O

(

A

Z/(σr)
+

A

h0
+
√

Aσr

)

cache misses, where σ is the slope of the stencil and r is the number of black
trapezoids created by the procedure in the space-cut case.

Proof: Let w be the width of T . We first prove that

w = O

(

A

h0
+
√

Aσr

)

. (8)

From Lemma 8, we have h = A/w ≥ min
(

h0, w/(4σ(r +1))
)

. Depending on
which of the two terms is smaller, we have two cases. If h0 ≤ w/(4σ(r +1)),
then we have A/w ≥ h0. Consequently, we have w ≤ A/h0, which proves
Eq. (8). Otherwise, we have A/w ≥ w/(4σ(r+1)), and thus w2 ≤ 4Aσ(r+1),
again proving Eq. (8).

The lemma then follows by substituting Eq. (8) in Theorem 10. Q.E.D.

Theorem 12 (Parallel cache complexity) Assume a Cilk scheduler, an
ideal distributed-cache machine with P processors and private caches of
size Z and line size L = Θ(1), and memory consistency maintained by
the Backer protocol. Let procedure walk1 traverse a trapezoid of width w0

and height h0. Let σ be the slope of the stencil and r be the number of
black trapezoids created by the procedure in the space-cut case. Then, the
execution of the procedure incurs

O

(

w0h0

Z/(σr2)
+ rw0 + σh0

√

Pr3w1+α
0

)

22

cache misses with high probability, where α = 1/ lg(2(r − 1)).

Proof: Consider the trace of the execution with the recursive decomposition
consisting of all segments corresponding to trapezoids completely executed
by the procedure. We identify the length of a segment in the decomposition
with the area of the trapezoid. Then, from Lemma 11, the cache complexity
of a segment B in the recursive decomposition is bounded by Q(B) ≤ f(|B|),
for some nondecreasing concave function f such that

f(A) ∈ O

(

A

Z/(σr)
+

A

h0
+
√

Aσr

)

.

The critical path is T∞ = O (σrh0w
α
0), as proven in Theorem 7. The theorem

then follows from Corollary 6. Q.E.D.

Remark: Practical instances of procedure walk1 operate with a constant
value σ, and a relatively large constant value r, such that α = 1/ lg(2(r −
1)) = ǫ, where ǫ is a “small” constant. Then, the cache complexity of
procedure walk1 applied to a trapezoid of width and height n is with high
probability

QP (n, Z) = O
(

n2/Z + n +
√

Pn3+ǫ
)

. (9)

4.3 Linear System Solver

In this section, we present and analyze a multithreaded cache oblivious linear
system solver based upon Gaussian elimination without pivoting followed by
back substitution.

Unlike the multithreaded cache oblivious algorithm for Gaussian elim-
ination presented by Blumofe et al. [7], which employs mutually recursive
procedures for LU decomposition, triangular solve, and Schur’s complement,
our algorithm consists of a single recursive procedure. In this respect, our al-
gorithm is similar to the Gaussian Elimination Paradigm of Chowdhury and
Ramachandran [12], but more general because it handles rectangular ma-
trices of arbitrary integral size. Toledo [29] studies the related but harder
problem of cache oblivious Gaussian elimination with pivoting.

4.3.1 Description of the Gaussian Elimination

Our solver can handle multiple right-hand sides simultaneously by solving
the system CX = B, where C is an N × N matrix and B consists of

23

M column vectors, each corresponding to one right-hand side associated with
one of M solution vectors. We store both matrices C and B in a N×(N+M)
matrix A by concatenating the columns of B to the columns of C. Both the
Gaussian elimination and the back substitution are implemented in place,
and the solution X can be found in A in place of the right hand side B.

The Gaussian elimination shown in Fig. 7 consists of procedure walk2,
which could be seen as variation of the 2D spacetime traversal for stencil
computations specialized for σ = 0, and of the kernel procedure gauss. Ex-
cept for the order in which it visits points in (k, i, j)-space, our algorithm is
equivalent to the familiar iterative Gaussian elimination expressed as triply
nested loop [20, Section 3.2]:

for (k=0; k<N-1; k++)
for (i=k+1; i<N; i++)
for (j=k; j<N+M; j++)
gauss(k, i, j);

Here, variable k indexes the pivot element, and i and j traverse the subma-
trix in the lower right corner of A for the update operation.

Procedure walk2 in Fig. 7 traverses all points (k, i, j) such that k0 ≤ k <
k1, i0 + di0 (k − k0) ≤ i < i1, and j0 + dj0 (k − k0) ≤ j < j1. Unlike in the
stencil algorithm, the slopes of the upper bounds are always zero and we do
not represent them explicitly. To make procedure walk2 equivalent to the
iterative Gaussian elimination, we invoke it as shown in Fig. 8.

We now argue informally that procedure walk2 is equivalent to the it-
erative Gaussian elimination. To establish correctness, we must argue that
procedure walk2 traverses the same (k, i, j)-space as the iterative procedure,
and that the traversal occurs in an order that respects the kernel dependen-
cies.

To see that the (k, i, j)-space is the same as the iterative procedure,
observe first that this property holds trivially in the base case in lines 30–33
and that this property is preserved by the k-cut in lines 25–28 assuming
inductively that the property holds for the two recursive calls. The i-cut in
lines 15–18 partitions the (k, i, j) into two disjoint subspaces, which are not
self-intersecting because of the condition ∆i ≥ 2 ∗ ∆k, which is analogous
for the condition for the space cut in the stencil case. A similar argument
applies to the j-cut in lines 20–23.

To see that the procedure respects the dependencies of the gauss kernel,
observe that i ≥ k and j ≥ k hold by construction, and that the kernel
requires that point (k, i, j) depend upon points (k − 1, i, j), (k, k, j), and
(k, i, k). The first dependency is enforced by the sync statement in line 27,
which, for fixed i and j, guarantees that the procedure visits points (k, i, j)

24

0 double A[N][N+M];

1 void (*kernel)(int k, int i, int j);

2 void gauss(int k, int i, int j)
3 {

4 if (j == k)
5 A[i][j] /= A[k][k];
6 else

7 A[i][j] -= A[i][k] * A[k][j];
8 }

9 cilk void walk2(int k0, int k1,

10 int i0, int di0, int i1,
11 int j0, int dj0, int j1)
12 {

13 int ∆k = k1 - k0, ∆i = i1 - i0, ∆j = j1 - j0;

14 if (∆i >= 2*∆k && ∆i >= ∆j && ∆i > 1) {

15 int im = (i0+i1)/2;
16 spawn walk2(k0, k1, i0, di0, im, j0, dj0, j1);
17 if (i0 < k1) sync;

18 spawn walk2(k0, k1, im, 0, i1, j0, dj0, j1);
19 } else if (∆j >= 2*∆k && ∆j > 1) {

20 int jm = (j0+j1)/2;
21 spawn walk2(k0, k1, i0, di0, i1, j0, dj0, jm);

22 if (j0 < k1) sync;

23 spawn walk2(k0, k1, i0, di0, i1, jm, 0, j1);
24 } else if (∆k > 1) {

25 int k2 = ∆k/2;
26 spawn walk2(k0, k0+k2, i0, di0, i1, j0, dj0, j1);
27 sync;

28 spawn walk2(k0+k2, k1, i0+di0*k2, di0, i1, j0+dj0*k2, dj0, j1);
29 } else if (∆k == 1) {

30 int i, j;
31 for (i = i0; i < i1; i++)
32 for (j = j0; j < j1; j++)
33 kernel(k0, i, j);
34 }

35 }

Figure 7: Multithreaded cache oblivious Gaussian elimination

25

kernel = gauss;

spawn walk2(0, N-1, /* k0, k1 */

1, 1, N, /* i0, di0, i1 */

0, 1, N+M); /* j0, dj0, j1 */

sync;

Figure 8: How to invoke procedure walk2 from Fig. 7 to compute Gaussian
elimination.

in ascending order of k. The second dependency is enforced by the sync

statement in line 17. If i0 ≥ k1, then if (k, i, j) is in the region traversed
by the procedure, then (k, k, j) is not in the region. Thus, the second de-
pendency holds vacuously and it is safe to execute the two subproblems in
parallel. Otherwise i0 < k1, and the procedure conservatively respects the
dependency by traversing the two subproblems in ascending order of i. A
symmetric argument holds for the third dependency in the j-cut case.

4.3.2 Work and Critical Path of Gaussian Elimination

We now determine the work, critical path, and sequential cache complexity
of procedure walk2. Then we apply Corollary 6 to derive its parallel cache
complexity.

Let ∆k = k1 − k0, ∆i = i1 − i0, and ∆j = j1 − j0. We state without
proof that the work T1 of the procedure is

T1 = O(∆k∆i∆j) .

The analysis of the critical path is more involved. One way to attack
the problem is to recognize that, depending on the parameters, procedure
walk2 computes an LU decomposition, the solution of a triangular linear
system, or a Schur’s complement, and then apply the analysis from [7] to
conclude that the critical path is T∞ = O(N lg2 N) when M = 0. Another
possibility would be to coerce procedure walk2 into the Parallel Gaussian
Elimination Paradigm [12], leading to the same conclusion when M = 0.
However, since these reductions would force us to multiply entities beyond
necessity and they would anyway be limited to a special case, we analyze
the critical path of procedure walk2 directly in Theorem 14 for general M .

Lemma 13 When procedure walk2 is invoked as in Fig. 8, these invariants
hold:

1. i0 ≥ k0.

26

2. j0 ≥ k0.

3. If di0 = 0, then i0 ≥ k1.

4. If dj0 = 0, then j0 ≥ k1.

Proof: Invariants 1 and 2 hold by construction, because the initial condi-
tions specify a region of (k, i, j) space such that i ≥ k and j ≥ k.

Invariant 3 trivially holds initially because di0 = 1. The recursive calls
in lines 16, 21, and 23 trivially preserve the invariant. In the recursive call in
line 26, we have k0+k2 ≤ k1, and the invariant is preserved. In the recursive
call in line 28, we have i0 + di0 k2 ≥ i0, and the invariant is preserved. We
are left to prove that im ≥ k1 in line 18. We have 2(im−k1) ≥ i0+i1−2k1 ≥
2i0 +∆i− 2k1 ≥ 2i0 +2∆k− 2k1 = 2(i0 − k0) ≥ 0, where the last inequality
follows from Invariant 1.

The proof of Invariant 4 is the same as Invariant 3 after swapping i and j.
Q.E.D.

Theorem 14 When procedure walk2 is invoked as in Fig. 8, its critical
path is

T∞ = O(N lg N lg(N + M)) .

Proof: Recall Iverson’s APL notation [22, Section 2.1]:

[A] =

{

1 if A is true;
0 otherwise.

We now prove that, when procedure walk2 is invoked as in Fig. 8, a
constant c ≥ 1 exists such that the critical path is

T∞(k0, k1, i0, i1, j0, j1) ≤
c(2∆k − 1 + lg ∆i + lg ∆j)(1 + [i0 < k1] lg(∆i))(1 + [j0 < k1] lg(∆j)) ,

(10)

for all sufficiently large values of ∆k, ∆i, and ∆j, where ∆k = k1 − k0,
∆i = i1 − i0, and ∆j = j1 − j0.

The proof is by well-founded induction on the triple (∆k,∆i,∆j) under
the product order: (∆k,∆i,∆j) ≤ (∆k′, ∆i′, ∆j′) iff ∆k ≤ ∆k′, ∆i ≤ ∆i′,
and ∆j ≤ ∆j′.

27

Base case: If (∆k,∆i,∆j) ≤ (1, 2, 2), a constant c ≥ 1 can be found such
that Eq. (10) holds.

Inductive step: Otherwise, depending on the relative values of ∆k, ∆i,
and ∆j, the procedure recursively cuts one dimension in half. We have
therefore three cases.

i-cut: (lines 15–18) We distinguish two subcases, depending upon whether
the sync statement in line 16 is executed or not.

If i0 < k1, then the sync statement is executed and the critical path
obeys the relation

T∞(k0, k1, i0, i1, j0, j1) ≤ T∞(k0, k1, i0, im, j0, j1)+T∞(k0, k1, im, i1, j0, j1)+1 ,

where the constant 1 accounts for the critical path of the constant number
of instructions executed by the procedure excluding the recursive calls.

By Lemma 13, i0 ≥ k1 holds inside the recursive call in line 18. Thus we
have

T∞(k0, k1, i0, i1, j0, j1)

≤ c(2∆k − 1 + lg(∆i/2) + lg ∆j)(1 + lg(∆i/2))(1 + [j0 < k1] lg(∆j))+

c(2∆k − 1 + lg(∆i/2) + lg ∆j)(1 + [j0 < k1] lg(∆j)) + 1

≤ c(2∆k − 1 + lg(∆i/2) + lg ∆j)(1 + lg ∆i)(1 + [j0 < k1] lg(∆j)) + 1

≤ c(2∆k − 1 + lg(∆i) + lg ∆j)(1 + lg ∆i)(1 + [j0 < k1] lg(∆j)) ,

where the last inequality holds because c ≥ 1.
If i0 ≥ k1, then the sync statement is not executed and the critical path

obeys the relation

T∞(k0, k1, i0, i1, j0, j1) ≤ max(T∞(k0, k1, i0, im, j0, j1), T∞(k0, k1, im, i1, j0, j1))+1 .

Thus we have

T∞(k0, k1, i0, i1, j0, j1) ≤ c(2∆k − 1 + lg(∆i/2) + lg ∆j)(1 + [j0 < k1] lg(∆j)) + 1

≤ c(2∆k − 1 + lg ∆i + lg ∆j)(1 + [j0 < k1] lg(∆j)) ,

where the last inequality holds because c ≥ 1.
Thus, the inductive step is proven for both the i0 ≤ k1 and the i0 > k1

cases of the i-cut.

j-cut: (lines 20–23) This case is the same as the i-cut swapping the roles of
i and j.

28

k-cut: (lines 25–28) The critical path obeys the relation

T∞(k0, k1, i0, i1, j0, j1) ≤ T∞(k0, km, i0, i1, j0, j1)+T∞(km, k1, i1, i1, j0, j1)+1 ,

where the constant 1 accounts for the critical path of the constant number
of instructions executed by the procedure excluding the recursive calls.

Thus we have

T∞(k0, k1, i0, i1, j0, j1)

≤ 2c(∆k − 1 + lg ∆i + lg ∆j)(1 + [i0 < k1] lg ∆i)(1 + [j0 < k1] lg(∆j)) + 1

≤ c(2∆k − 1 + lg ∆i + lg ∆j)(1 + [i0 < k1] lg ∆i)(1 + [j0 < k1] lg(∆j)) ,

where the last inequality holds because c ≥ 1.
Because Eq. (10) holds in the base case and in all the inductive cases,

the theorem is proven. Q.E.D.

4.3.3 Cache Complexity of Gaussian Elimination

Lemma 15 (Aspect ratio) If procedure walk2 is invoked with initial pa-
rameters ∆k0, ∆i0, and ∆j0, then for all recursive subproblems the following
invariants hold:

∆k ≥ min(∆k0, Ω(max(∆i,∆j))) ; (11a)

∆i ≥ min(∆i0, Ω(max(∆k,∆j))) ; (11b)

∆j ≥ min(∆j0, Ω(max(∆k,∆i))) . (11c)

Proof: The invariants are true initially, and the procedure always cuts the
dimension corresponding to the largest of 2∆k, ∆i, or ∆j. Q.E.D.

Lemma 16 (Sequential cache complexity) Let procedure walk2 be in-
voked with initial parameters ∆k0, ∆i0, and ∆j0, on a single processor with
an ideal cache of size Z and line size L = Θ(1). Then each subproblem
generated by the procedure incurs at most

O

(

V 2/3 + V

(

1√
Z

+
1

∆k0
+

1

∆i0
+

1

∆j0

))

cache misses, where V = ∆k∆i∆j.

29

Proof: Procedure walk2 visits a subsequence of the (k, i, j)-space visited
by the cache oblivious matrix multiplication procedure from [16], and thus
the sequential cache complexity of each subproblem is [16, Theorem 1]

O

(

∆k∆i + ∆k∆j + ∆i∆j +
V√
Z

)

.

We now prove that ∆k∆i = O(V 2/3+V/∆j0). From Lemma 15 Eq. (11c),
we have that either ∆j ≥ ∆j0 or ∆j = Ω(max(∆k,∆i)). If ∆j ≥ ∆j0 then
∆k∆i = V/∆j ≤ V/∆j0 and we are done. Otherwise, (∆k∆i)2 = V 2/∆j2 ≤
O(V 2/(∆k∆i)), and therefore ∆k∆i = O(V 2/3).

A similar argument proves that ∆k∆j = O(V 2/3 + V/∆i0) and that
∆i∆j = O(V 2/3 + V/∆k0), from which the lemma follows. Q.E.D.

Theorem 17 (Parallel cache complexity) We triangularize a system of
N linear equations in N unknowns with M right-hand sides by Gaussian
elimination. Assume a Cilk scheduler, an ideal distributed-cache machine
with P processors and private caches of size Z and line size L = Θ(1),
and memory consistency maintained by the Backer protocol. Let procedure
walk2 traverse the (k, i, j)-space with volume V = O(N2(N + M)). Then,
the execution of the Gaussian elimination procedure incurs

O

(

(

V 2S
)1/3

+ V

(

1√
Z

+
1

N
+

1

N + M

))

cache misses with high probability, where S = O(PN lg N lg(N + M)).

Proof: Procedure walk2 traverses the (k, i, j)-space with dimensions ∆k0 =
N , ∆i0 = N , and ∆j0 = N +M and volume V = ∆k0∆i0∆j0 = O(N2(N +
M)). The number of cache misses is proportional to the work associated
with the (k, i, j)-space, which is proportional to its volume V . According
to Lemma 16 and for L = Θ(1), the sequential cache complexity of each
subproblem of the recursive procedure walk2 is a concave function f(V) ∈
O(V 2/3 + V (1/

√
Z + 1/N + 1/(N + M)). Hence, the theorem follows from

Corollary 6, with the critical path length given by Theorem 14. Q.E.D.

Remark: For the degenerate cases M = 0 (LU decomposition without
right-hand side) and M = 1 (single right-hand side), the parallel cache
complexity of the Gaussian elimination is

QP (N, Z) = O

(

N3

√
Z

+
(

PN lg2 N
)1/3

N2

)

. (12)

30

4.3.4 Description of the Back-Substitution

Given an upper triangular matrix, we can apply a column-oriented back-
substitution [20, Section 3.1.3] to solve a linear system of equations. For
multiple right-hand sides the iterative, column-oriented back-substitution
consists of the triply nested loop:

for (k=N-1; k>=0; k--) {

for (j=N; j<N+M; j++) { /* for each right-hand side */

A[k][j] /= A[k][k];
for (i=k-1; i>=0; i--)

A[i][j] -= A[i][k] * A[k][j];
}

}

We implement a multithreaded cache oblivious version of the back-substitu-
tion by reusing traversal procedure walk2 of Fig. 7. The new kernel proce-
dure backsub is shown in Fig. 9, and the invokation of walk2 to compute
the back-substitution is shown in Fig. 10.

0 void backsub(int k′, int i′, int j)
1 {

2 int k = N-1-k′;

3 int i = N-1-i′;
4 if (i == k)
5 A[i][j] /= A[k][k];
6 else

7 A[i][j] -= A[i][k] * A[k][j];
8 }

Figure 9: Kernel for multithreaded cache oblivious back substitution.

kernel = backsub;

spawn walk2(0, N, /* k0, k1 (reversed) */

0, 1, N, /* i0, di0, i1 (reversed) */

N, 0, N+M); /* j0, dj0, j1 */

sync;

Figure 10: How to invoke procedure walk2 from Fig. 7 to compute the
back-substitution.

We can reuse procedure walk2 by observing that the the back-substitu-
tion and the Gaussian elimination traverse similar iteration spaces. The
iterative version traverses the space (k, i, j) such that N > k ≥ 0, N ≤ j <
N +M , and k > i ≥ 0. As shown in Fig. 10, we set ∆i0 = 1 and ∆j0 = 0, so

31

that procedure walk2 invokes the backsub kernel with parameters (k′, i′, j)
such that 0 ≤ k′ < N , k′ ≤ i′ < N , and N ≤ j < N + M . With the
substitutions k = N − 1 − k′ and i = N − 1 − i′ in the backsub kernel, the
iteration spaces of walk2 and of the iterative routine are the same.

We state without proof that the work T1 of the back-substitution is

T1 = O(N2M) .

The critical path T∞ of the back-substitution is similar to that of the
Gaussion elimination determined in Theorem 14.

Theorem 18 When procedure walk2 is invoked as in Fig. 10, its critical
path is

T∞ = O((N + lg M) lg N) .

Proof: Apply Eq. (10) from the proof of Theorem 14 with ∆k = N , ∆i =
N , and ∆j = M according to the parameters of Fig. 10, and note that with
these parameters we have [j0 < k1] = 0. Q.E.D.

4.3.5 Cache Complexity of the Back-Substitution

Theorem 19 (Parallel cache complexity) Assume a Cilk scheduler, an
ideal distributed-cache machine with P processors and private caches of
size Z and line size L = Θ(1), and memory consistency maintained by the
Backer protocol. Let procedure walk2 traverse the (k, i, j)-space with volume
V = O(N2M). Then, the execution of the back-substitution procedure incurs

O

(

(

V 2S
)1/3

+ V

(

1√
Z

+
1

N
+

1

M

))

cache misses with high probability, where S = O(P (N + lg M) lg N).

Proof: Analogous to the proof of Theorem 17, the theorem is a consequence
of Corollary 6 and the critical path length from Theorem 18. Q.E.D.

Remark: For a single right-hand side, M = 1, the parallel cache complex-
ity of the back-substitution is

QP (N, Z) = O
(

N2 +
(

PN2 lg N
)1/3

N
)

. (13)

Because in this case the algorithm performs Θ(N2) work on Θ(N2) input
elements, the cache is asymptotically useless. The algorithm benefits from
the cache when solving for multiple right-hand sides, however.

32

4.4 Longest Common Subsequence

In this section, we analyze a multithreaded algorithm for computing the
length of a longest common subsequence (LCS) of two sequences.

The length computation is a subproblem of the problem of computing a
LCS of two sequences, and its textbook solution is a dynamic programming
algorithm [13] that could in principle be formulated as a 1D-stencil compu-
tation. The stencil formulation is inconvenient, however, if one wishes to
use the length computation as a subroutine in Hirschberg’s algorithm [23]
for computing the LCS. Here, we present a more direct Cilk program for
computing the length of the LCS which can easily be incorporated into
Hirschberg’s algorithm. Our program is derived from the cache oblivious
sequential algorithm of Chowdhury and Ramachandran [11], and its paral-
lelization is based upon [25].

4.4.1 Description of the Longest Common Subsequence Algo-
rithm

Cilk procedure lcslen in Fig. 11 computes the length of the longest common
subsequence of two sequences, x of length M − 1 and y of length N − 1.
The first sequence is stored in array x at index range [1, . . . , M −1], and the
second in array y at index range [1, . . . , N − 1]. To compute the length of
the longest common subsequence, initialize array c with zeros, and invoke
procedure lcslen with the following arguments:

spawn lcslen(1, M, 1, N); sync;

The work of the length computation is T1 = O(MN).
To compute the critical path and cache complexity, we assume for sim-

plicity w.l.o.g. that N ≥ M . The length of the critical path is T∞ =
O(M lg 3N/M), as can be seen from the following argument.5 Procedure
lcslen splits both dimensions in half until the base case is reached, which
occurs when the shorter of the two dimensions is 1. Because M is the shorter
dimension by assumption the recursion depth is lg M . The critical path of
the base case is O(N/M), corresponding to the rectanglar tableau of width
N/M and height 1. Thus, the critical path obeys the recurrence

T∞(M) =

{

N/M, if M = 1,
3T∞(M/2) + Θ(1), otherwise ,

which has the stated result.
5Shorter critical paths are possible by partitioning the tableau into more than just four

quadrants [25].

33

0 int x[M], y[N]; /* sequences */

1 int c[M+N-1]; /* length array */

2 #define C(I,J) c[(I)-(J)+N] /* index projection into c */

3 cilk void lcslen(int i0, int i1, int j0, int j1)
4 {

5 int ∆i = i1 - i0, ∆j = j1 - j0;

6 if (∆i <= 1 || ∆j <= 1) { /* base case */

7 int i, j;
8 for (i = i0; i < i1; i++) {

9 for (j = j0; j < j1; j++) {

10 if (x[i] == y[j])
11 C(i,j) = C(i-1,j-1) + 1;

12 else

13 C(i,j) = MAX(C(i-1,j), C(i,j-1));
14 }

15 }

16 } else { /* recursion */

17 int im = (i0+i1)/2;
18 int jm = (j0+j1)/2;
19 spawn lcslen(i0, im, j0, jm); /* Q0 */

20 sync;

21 spawn lcslen(i0, im, jm, j1); /* Q1 */

22 spawn lcslen(im, i1, j0, jm); /* Q2 */

23 sync;

24 spawn lcslen(im, i1, jm, j1); /* Q3 */

25 }

26 }

Figure 11: Multithreaded cache oblivious length computation of a longest
common subsequence computation.

34

We maintain the length values, which the naive algorithm [13] stores in a
M×N tableau, in array c of length M +N−1. Intuitively, array c covers one
row and one column of the M × N dynamic programming tableau spanned
by the two sequences x and y. In particular, in the initial state, we assume
that array c stores length value 0 in each element, and serves as the top
row and leftmost column of the tableau. In the final state, array c contains
the lengths of subsequences associated with the bottom row and rightmost
column of the tableau. The 3-point stencil of the tableau prescribes the
data dependencies such that point C(i, j) depends on points C(i− 1, j − 1),
C(i − 1, j), and C(i, j − 1), cf. base case in Fig. 11.

4.4.2 Cache Complexity of the Longest Common Subsequence
Algorithm

Chowdhury and Ramachandran [11] introduced a cache oblivious version
of the longest common subsequence computation. They have shown that
the sequential execution of the length computation has cache complexity
Q(M, N, Z) = O(MN/Z + M + N), where we assume that the cache line
size L = Θ(1). This cache complexity is asymptotically optimal, and their
result holds under the assumption of an ideal cache. Their analysis also
applies to the sequential execution of procedure lcslen in Fig. 11.

The multithreaded version of the length computation in Fig. 11 consists
of four subproblems corresponding to tableau quadrants Q0, Q1, Q2, and Q3.
Hence, the recursive computation of the quadrants produces a 4-recursive
decomposition of the trace of procedure lcslen, which consists of four com-
plete subtrees of the call tree, each of which incurs O(MN/Z+M +N) cache
misses on subproblems of size M ×N . The synchronization before and after
the computations of quadrants Q1 and Q2 constrains the concatenation of
the subsegments, yet does not affect the applicability of Corollary 6.

To bound the number of cache misses Q, let w = MN be the length of a
segment. Then Q ≤ f(w) for some concave function f(w) ∈ O(w/Z +w1/2).
For our 4-recursive decomposition, the cache complexity of the parallel ex-
ecution of lcslen is according to Corollary 6

QP (M, N, Z) = O
(

MN/Z + S1/2(M + N) + S
)

, (14)

where S = O(PM lg 3N/M)) with high probability.

Remark: The sequential cache complexity of procedure lcslen for square
problems of size n = M = N is Q(n, Z) = O(n2/Z + n), and the Cilk cache

35

complexity is
QP (n, Z) = O

(

n2/Z +
√

Pn3.58
)

, (15)

if we approximate 2 + lg 3 ≈ 3.58.

5 Conclusion

We presented a technique for analyzing the cache complexity of multi-
threaded cache oblivious algorithms on an idealized parallel machine.

While our technique yields stronger upper bounds than previously known,
our bounds are not optimal. For example, the matrix multiplication proce-
dure in Fig. 1 can be scheduled statically by partitioning the trace into S =
P 3/2 segments, each computing a matrix multiplication of size (n/

√
P) ×

(n/
√

P), thereby yielding cache complexity O(n3/
√

Z +
√

Pn2), which is
lower than the bound O(n3/

√
Z +

√
nPn2) that we derived for the work-

stealing scheduler. Similarly, a matrix multiplication procedure that uses
temporary arrays [7] has a shorter critical path and can be scheduled so as
to incur O(n3/

√
Z + 3

√
Pn2) cache misses. For the one-dimensional stencil

computation, we conjecture that a smart scheduler should incur no more
than O(n2/Z + Pn1+ǫ) cache misses. Experiments suggest that these three
expressions for the cache complexity constitute a more accurate model of
the work-stealing scheduler than our upper bounds in Eqs. (4) and (9), but
we lack proof that this is the case.

References

[1] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. The Data
Locality of Work Stealing. Theory of Computing Systems, 35(3):321–
347, 2002.

[2] Laszlo A. Belady. A Study of Replacement Algorithms for Virtual
Storage Computers. IBM Systems Journal, 5(2):78–101, 1966.

[3] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Bradley C.
Kuszmaul. Concurrent Cache-Oblivious B-Trees. In 17th Annual ACM
Symposium on Parallelism in Algorithms and Architectures, pages 228–
237, Las Vegas, NV, July 2005.

[4] Gianfranco Bilardi and Franco P. Preparata. Upper Bounds to
Processor-Time Tradeoffs Under Bounded-Speed Message Propagation.

36

In 7th Annual ACM Aymposium on Parallel Algorithms and Architec-
tures, pages 185–194, Santa Barbara, CA, July 1995.

[5] Guy E. Blelloch and Phillip B. Gibbons. Effectively Sharing a Cache
Among Threads. In 16th Annual ACM Symposium on Parallelism in
Algorithms and Architectures, pages 235–244, Barcelona, Spain, June
2004.

[6] Guy E. Blelloch, Phillip B. Gibbons, and Yossi Matias. Provably Effi-
cient Scheduling for Languages with Fine-Grained Parallelism. Journal
of the ACM, 46(2):281–321, 1999.

[7] Robert D. Blumofe, Matteo Frigo, Chrisopher F. Joerg, Charles E.
Leiserson, and Keith H. Randall. An Analysis of Dag-Consistent Dis-
tributed Shared-Memory Algorithms. In 8th Annunal ACM Symposium
on Parallel Algorithms and Architectures, pages 297–308, Padua, Italy,
June 1996.

[8] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An Effi-
cient Multithreaded Runtime System. In 5th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, pages 207–
216, Santa Barbara, CA, July 1995.

[9] Robert D. Blumofe and Charles E. Leiserson. Scheduling Multithreaded
Computations by Work Stealing. Journal of the ACM, 46(5):720–748,
September 1999.

[10] Richard P. Brent. The Parallel Evaluation of General Arithmetic Ex-
pressions. Journal of the ACM, 21(2):201–206, April 1974.

[11] Rezaul A. Chowdhury and Vijaya Ramachandran. Cache-Oblivious
Dynamic Programming. In 17th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 591–600, Miami, FL, 2006.

[12] Rezaul Alam Chowdhury and Vijaya Ramachandran. The cache-
oblivious gaussian elimination paradigm: Theoretical framework, par-
allelization and experimental evaluation. In Proceedings of the Nine-
teenth Annual ACM Symposium on Parallel Algorithms and Architec-
tures (SPAA ’07), pages 71–80, New York, NY, USA, 2007. ACM Press.

[13] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. In-
troduction to Algorithms. The MIT Press, Cambridge, Massachusetts,
1990.

37

[14] David E. Culler, Richard M. Karp, David A. Patterson, Abhijit Sahay,
Klaus E. Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten
von Eicken. LogP: Towards a Realistic Model of Parallel Computation.
In 4th ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programming, pages 1–12, San Diego, CA, May 1993.

[15] Steven J. Fortune and James Wyllie. Parallelism in Random Access
Machines. In 10th Annual ACM Symposium on Theory of Computing,
pages 114–118, San Diego, CA, May 1978.

[16] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ra-
machandran. Cache Oblivious Algorithms. In 40th Annual Symposium
on Foundations of Computer Science, pages 285–298, New York, USA,
October 1999.

[17] Matteo Frigo, Keith H. Randall, and Charles E. Leiserson. The Im-
plementation of the Cilk-5 Multithreaded Language. In ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion, Montreal, Canada, June 1998.

[18] Matteo Frigo and Volker Strumpen. Cache Oblivious Stencil Computa-
tions. In International Conference on Supercomputing, pages 361–366,
Boston, Massachusetts, June 2005.

[19] Phillip B. Gibbons, Yossi Matias, and Vijaya Ramachandran. Can a
Shared-Memory Model Serve as a Bridging Model for Parallel Compu-
tation? Theory of Computing Systems, 32(3):327–359, 1999.

[20] Gene H. Golub and Charles F. van Loan. Matrix Computations. Johns
Hopkins Univ. Press, 3rd edition, 1996.

[21] Ronald L. Graham. Bounds for Certain Multiprocessing Anomalies.
The Bell System Technical Journal, 45:1563–1581, November 1966.

[22] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete
Math. Addison Wesley, Reading, Massachusetts, 1994.

[23] Daniel S. Hirschberg. A Linear Space Algorithm for Computing Maxi-
mal Common Subsequences. Communications of the ACM, 18(6):341–
343, June 1975.

[24] Jia-Wei Hong and H. T. Kung. I/O Complexity: The Red-Blue Peb-
bling Game. In 13th Annual ACM Symposium on Theory of Computing,
pages 326–333, Milwaukee, Wisconsin, May 1981.

38

[25] Charles E. Leiserson. Minicourse on Miltithreaded Programming in
Cilk, Lecture 2: Analysis of Cilk Algorithms. Summer School on
Language-Based Techniques for Concurrent and Distributed Software
at the University of Oregon, 2006.

[26] Girija J. Narlikar and Guy E. Blelloch. Space-Efficient Scheduling of
Nested Parallelism. ACM Transactions on Programming Languages and
Systems, 21(1):138–173, 1999.

[27] Daniel D. Sleator and Robert E. Tarjan. Amortized Efficiency of List
Update and Paging Rules. Communications of the ACM, 28(2):202–
208, February 1985.

[28] Volker Strumpen and Matteo Frigo. Software Engineering Aspects of
Cache Oblivious Stencil Computations. Technical Report RC24035,
IBM Research, August 2006.

[29] Sivan Toledo. Locality of reference in LU decomposition with partial
pivoting. SIAM J. Matrix Analysis and Applications, 18(4):1065–1081,
October 1997.

[30] Leslie G. Valiant. A Bridging Model for Parallel Computation. Com-
munications of the ACM, 33(8):103–111, August 1990.

39

